
Abstract: Trip mode inference plays an important role in transportation 
planning and management. Most studies in the field have focused on 
the methods based on GPS data collected from mobile devices. While 
these methods can achieve relatively high accuracy, they also have 
drawbacks in data quantity, coverage, and computational complexity. 
This paper develops a trip mode inference method based on mobile 
phone signaling data. The method mainly consists of three parts: 
activity-nodes recognition, travel-time computation, and clustering 
using the Logarithm Gaussian Mixed Model. Moreover, we compare 
two other methods (i.e., Gaussian Mixed Model and K-Means) with 
the Logarithm Gaussian Mixed Model. We conduct experiments using 
real mobile phone signaling data in Shanghai and the results show that 
the proposed method can obtain acceptable accuracy overall. This study 
provides an important opportunity to infer trip mode from the aspect of 
probability using mobile phone signaling data.

Keywords: Trip mode inference, mobile phone signaling data, Loga-
rithm Gaussian Mixed Model

1	 Introduction

Trip mode inference determines the transportation mode of 
travelers, based on the speed, travel time and other information 
obtained from their trips, which is significant for transportation 
planning and management. Accurate trip mode inference is also 
important for the study of trip mode choice (Reichert & Holtz-
Rau 2015; Zahabi, Miranda-Moreno, Patterson, & Barla, 2012). 
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Traditional methods of acquiring the trip mode are usually based on questionnaires, travel diaries and 
telephone interviews (Stenneth, Wolfson, Yu, & Xu, 2011). The wide spread of mobile phones has made 
it an effective means of collecting trip information. Existing methods of trip mode identification mainly 
focus on GPS data, and some involve mobile phone sensor data and call detail records (CDRs). 

Mobile phone data is mainly obtained through mobile phone positioning technology and vari-
ous sensors. The data collected by different technologies has different characteristics and precisions, 
which can be divided into coarse-grained data and fine-grained data. The coarse-grained data is mainly 
obtained through the cell phone tower network positioning technology, including CDRs and mobile 
phone signaling data. The fine-grained data is acquired through mobile terminal positioning technology 
and sensors, consisting of GPS data, triaxial acceleration data, angular acceleration, and gravitational 
acceleration, etc. In terms of fine-grained data, some studies only applied mobile phone GPS data 
to identify trip mode (Young-Ji, Abdulhai, & Shalaby, 2009; Bolbol, Cheng, Tsapakis, & Haworth, 
2012; Gonzalez et al, 2010; Zhang, Liu, Bao, & Qiang. (2015), and some studies only utilized the 
mobile phone acceleration data in the trip mode identification (Nham, Siangliulue, & Yeung, 2008; 
Sun, Zhang, Li, Guo, &, Li, 2010). Moreover, some scholars used the mobile phone sensor data (Nick, 
Coersmeier, Geldmacher, & Goetze, 2010; Frendberg, 2011), and some scholars combined the mobile 
phone GPS data and acceleration data (Reddy, Burke, Estrin, & Hansen, 2008; Reddy et al., 2010). In 
terms of coarse-grained data, some scholars used GSM data to identify trip mode (Anderson & Muller, 
2006; Sohn et al., 2006). Wang, Calabrese, Lorenzo, and Ratti (2010) only utilized CDRs to infer trip 
mode.

In the existing literature, the identification of trip mode is generally implemented by a rule-based 
method or a machine learning algorithm. Rule-based methods usually set thresholds for feature vari-
ables, including speed, time, acceleration and distance, etc. In specific processing, multiple thresholds 
are generally used to identify trip modes (Shin et al., 2015; Li, Yang, Zhang, Zhou, & He, 2015). 
There are also a few scholars who utilized a single travel time (Wang et al., 2010) to develop identifica-
tion rules. Some scholars have combined multiple algorithms to identify trip mode. More commonly 
used ones in machine learning algorithms are support vector machines (Nham et al., 2008; Ashqar, 
Almannaa, Elhenawy, Rakha, & House, 2018; Xiao, Wang, Fu, & Wu, 2017), decision trees (Reddy 
et al., 2008; Nick et al., 2010; Reddy et al., 2010), random forest (Shafique & Hato, 2015; Xiao et al., 
2017), Bayesian network (Reddy et al., 2008; Nick et al.,2010), neural network (Young-Ji et al., 2009; 
Gonzalez et al., 2010), K-nearest neighbor algorithm (Reddy et al., 2008; Reddy et al., 2010), hidden 
Markov model (Reddy et al., 2008; Xu et al., 2011) and so on. In summary, in the machine learning 
algorithm, the decision tree, random forest and support vector machine are more excellent. Since various 
algorithms have their own applicable limitations, the identification accuracy is also related to data type 
and feature variables. In addition, combinations of various algorithms and improved machine learning 
methods may contribute to the improvement of identification accuracy.

Most studies utilized GPS data to identify trip mode. However, GPS information is not available 
in shielded areas (e.g., tunnels) and the GPS sensor consumes significant power so that sometimes users 
turn it off to save the battery (Young-Ji et al., 2009). On the other hand, large volume of data about 
the position of mobile phones can be collected from signaling data. When people are in motion, the 
geographic information will be collected by mobile base station that are nearby (Xu et al., 2011), which 
construct the signaling data. To acquire signaling data and obtain significant information bring no extra 
overhead for mobile phone users and telecom operators. Wang et al. (2010) extracted trip information 
(user id, origin, destination, start time, end time) form CDRs. Based on the trip data collected from 
CDRs, travel time can be obtained. Thus, they infer trip mode based on travel time. The problem can be 
stated as follows: given an origin and a destination, as well as the travel time of travelers who move from 
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the origin to the destination, identify trip mode for each traveler. Based on the Wang et al. (2010) meth-
od, we propose the trip mode identification method for mobile phone signaling data. Travel times are 
not evenly distributed, and the travelers can be clustered into subgroups according to their travel time.

In this paper, we first describe the dataset and complete the data preprocessing, then conduct trip 
mode identification method, which includes activity nodes recognition, travel time computation, and 
clustering with Logarithm Gaussian Mixed Model (Log-GMM). Activity nodes recognition focuses on 
finding the origin and the destination for trips. Considering the recorded time of signaling data is the 
handover time, travel time can be obtained through travel time computation method that we designed. 
Gaussian Mixed Model (GMM) clustering is a popular method, which has the advantage of applicabil-
ity to large sample with unknown overall distribution. Based on GMM, we replace Gaussian distribu-
tion with Lognormal distribution and the Log-GMM is developed. Finally, the experiment is designed 
and conducted, and the results show that the method is promising.

The remainder of the paper is organized in the following four sections. Section 2 describes the 
dataset consisting of mobile phone signaling data and cell phone tower data. In Section 3, the trip 
mode inference method is developed. Subsequently, the results of the study are presented and finally the 
conclusions are presented.

2	 Data set

Data set used in this study consists of mobile phone signaling data and cell phone tower data in Shang-
hai for the period from May 4th to May 17th of 2015. The mobile phone signaling data set consists 
of about 390 million records of 3 million users, and the main information used includes User ID, 
Timestamp and NID. Moreover, NID represents ID of cell phone tower. Examples of mobile phone 
signaling data are shown as Table 1. There are 33,118 cell phone towers in Shanghai. Cell phone tower 
data includes NID, longitude, and latitude and some examples are listed in Table 2. After matching the 
mobile phone signaling data to cell phone tower data by NID, mobile phone user’s location at the time 
can be determined.

Table 1. Examples of mobile phone signaling data

User ID Timestamp NID

00033C76D635266D926BCE5D91B51700 20150504160620 16452

00033C76D635266D926BCE5D91B51700 20150504162005 5802

00033C76D635266D926BCE5D91B51700 20150504162215 4537

00033C76D635266D926BCE5D91B51700 20150504162413 5152

Table 2. Examples of mobile phone tower data

NID longitude latitude

11678 120.6480 31.33301

34038 120.6778 31.11788

5413 120.7962 30.68210

17235 120.8347 31.13114
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3	 Trip mode inference method

The trip mode identification method proposed in this paper includes activity nodes recognition, travel 
time computation, and clustering.

3.1	 Activity nodes recognition

Due to the fluctuation of signal, cell phone positioning results may jump at several nearby cell phone 
towers. This situation is called ping-pong phenomenon or ping-pong handover (Vandenbroucke, Bu-
cher, & Crompvoets, 2013). Most existing solutions to address this issue focus on increasing hysteresis 
threshold (used as a spatial constraint to merge close cell phone towers) to reduce the positioning error 
(Vandenbroucke et al., 2013). However, simply increasing the hysteresis threshold may result in drop-
ping useful information from the spatial-temporal trajectories. To provide a better solution, we utilize 
two parameters to filter the phone signaling data. The first parameter is a spatial staying threshold δ to 
constrain fluctuation in spatial dimension and the second parameter is the temporal staying threshold τ 
used to limit the temporal dimension. When a user’s position is fluctuating within a circle with radius 
less than δ during time period τ, this user is regarded as staying in this circle, and when a user’s signal 
jump to a remote location and back to the previous location during time period τ, this user is regarded 
as motionless. The rules to recognize activity nodes are illustrated in Figure 1. The value of these two pa-
rameters are determined based on domain knowledge. The spatial staying threshold is selected as δ=400 
meters considering lower bound of walking trip distance is 500 meters. τ is assigned to 30 minutes based 
on the analysis of household travel survey data of Shanghai in 2009, which is the 5% quantile of activity 
duration distribution and shown in Figure 2. Based on this observation, staying at a place more than 30 
minutes is recognized as an activity node.

 

 

Figure 1. The rules to recognize activity nodes
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Figure 2. Cumulative frequency of activity duration

3.2	 Travel time computation

Mobile phone signaling data has the trajectory of users. Once we annotate the activity nodes in trajec-
tory, we can calculate trip travel time as following.

(1) For a user i, the series of records denoted as:

 	 (1)

where tⁱ,j  and ni,j respectively correspond to the timestamp and cell phone tower location number 
of the jth record of user i.

(2) Compute travel time according to activity nodes obtained from Section 3.1. We assume the first 
activity node of user i is the kth record, denoted as the origin of trip m, and the second activity node is 
the sth record, denoted as the destination of trip m, which is also the origin of trip m+1 of user i. The 
OD pair of the trip m is (ni,k , ni,s ). ti,j represents the moment of arriving at cell phone tower n_(i,j) of user 
i, which also means the moment of departing from last phone tower ni,j-1, thus the travel time Ti

m of trip 
m of user i can be computed by:

 	 (2)

(3) Compute travel time of trips for all users.

3.3	 Clustering of trip travel time

We develop Logarithm Gaussian Mixture Model based on GMM. GMM could be used to cluster travel 
time. GMM is a probabilistic model for representing normally distributed subpopulations within an 
overall population (Rasmussen, 1999). GMM refers to the estimation of the probability density dis-
tribution of a sample, and the model is a weighted sum of several Gaussian models and each Gaussian 
model represents a class. The data in the sample are projected on several Gaussian models, we can get the 
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probability of each category, and then we can choose the most probable class as the result of the decision.
GMM is parameterized by two types of values, the mixture component weights and the compo-

nent mean and variances. For a GMM with K components, the kth component has a mean of μk and 
variance of σk for the univariate case. The mixture component weights are defined as φk for component 
Ck , with the constraint that ∑ki = 1 φi =1 so that the total probability distribution normalizes to 1. The 
mathematical form of GMM is as follows:

 	 (3)

	 (4)

where φi ≥ 0, Ν( x | μi ,σi ) is normal distribution.

If the number of components K is known, expectation maximization (EM) is the technique most 
commonly used to estimate the mixture model’s parameters. EM is a numerical technique for maximum 
likelihood estimation and is usually used when closed form expressions for updating the model param-
eters can be calculated. In frequentist probability theory, models are typically learned by using maximum 
likelihood estimation techniques, which seek to maximize the probability, or likelihood, of the observed 
data given the model parameters. Unfortunately, finding the maximum likelihood solution for mixture 
models by differentiating the log likelihood and solving for 0 is usually analytically impossible. EM 
algorithm (Dempster, Laird, & Rubin, 1977) is an iterative algorithm and has the convenient property 
that the maximum likelihood of the data strictly increases with each subsequent iteration, meaning it is 
guaranteed to approach a local maximum or saddle point.

Expectation maximization for mixture models consists of two steps. The first step, known as the 
expectation step or E step, consists of calculating the expectation of the component assignments Ck for 
each data point xⁱ ∈ X given the model parameters φk , μk , and σk . The second step is known as the 
maximization step or M step, which consists of maximizing the expectations calculated in the E step 
with respect to the model parameters. This step consists of updating the values φk , μk , and σk . The 
entire iterative process repeats until the algorithm converges, giving a maximum likelihood estimate. 
Intuitively, the algorithm works because knowing the component assignment Ck for each xi makes 
solving for φk , μk , and σk . easy, while knowing φk , μk , and σk . makes inferring p ( Ck | xi ) easy. The 
expectation step corresponds to the latter case while the maximization step corresponds to the former. 
Thus, by alternating between which values are assumed fixed, or known, maximum likelihood estimates 
of the non-fixed values can be calculated in an efficient manner.

The EM algorithm for GMM starts with an initialization step, which assigns model parameters to 
reasonable values based on the data. Then, the model iterates over the expectation (E) and maximization 
(M) steps until the parameters’ estimates converge, i.e., for all parameters θt at iteration t, |θt – θt -1 | ≤ ϵ 
for some user-defined tolerance ϵ. The EM algorithm for GMM with K components can be described 
as follows:

Initialization Step: Randomly selected samples without replacement from the dataset 
X = { x_1 ,…, xN } as the component mean estimates μ ̂1 ,…, μ ̂K . Set all component variance estimates 

to the sample variance σ̂¹2 ,…, σ̂K 2 =1_
N
 ∑N

i  =1 
( xⁱ - x ̅ )2 , where x ̅  is the sample mean x ̅ =1_

N
  ∑N

i  =1 
xi . Set all 

component distribution prior estimates to the uniform distribution φ ̂1 , …, φ ̂K =1_
k
 .
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E-step: Calculate ∀ i,k

	 (5)

where γ ̂ik is the probability that xi is generated by component Ck.

M-step: Using the γ ̂ik calculated in the E-step, calculate the following in that order ∀ k :

	 (6)

	 (7)

	 (8)

Most travel times represent skewed distribution (Fosgerau & Fukuda, 2012; Guessous, Aron, 
Bhouri, & Cohen, 2014; Rahman, Wirasinghe, & Kattan, 2018). Sometimes, travel time can represent 
Gaussian distribution. In this paper, we assume travel times obey Lognormal distribution. Based on 
GMM, we develop Logarithm Gaussian Mixture Model as follows:

	 (9)

	 (10)

The EM algorithm also can be used for Log-GMM. The dataset X = {x₁ ,…, xN } can be transformed 
to logX = { lnx₁ ,…, lnxN }. Then the dataset { lnx₁ ,…, lnxN } is used to estimate parameters of Log-GMM 
through the EM algorithm for GMM. 

By estimating the parameters of Log-GMM, clustering can be achieved through probability com-
putation. Figure 4 illustrates how trip mode identification is accomplished using Log-GMM. There are 
three components in Figure 4, and each component has its own parameters. For a sample, probabilities 
in components can be calculated and the component with the largest probability is regard as the trip 
mode of the sample. The thresholds can be obtained after parameters estimation. When travel time t of 
a trip is less than t₁, the mode of the trip is identified as Mode 1. When travel time t of a trip is larger 
than t2, the mode of the trip is identified as Mode 3. While travel time t of a trip is between t₁ and t2, the 
mode of the trip is identified as Mode 2. In this paper, we mainly study the long-distance trips and the 
modes to identify include car, subway and bus. In Figure 3, Mode 1, Mode 2 and Mode 3 respectively 
correspond to car, subway and bus.
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Figure 3. Illustration of trip mode identification

4	 Results

Travel time in given two activity nodes is mostly fluctuating at a certain value for each trip mode, thus 
we select two determined activity nodes after all travel time have been computed. In the experiment, we 
select Pinglu Rd. and Beijing West Rd., and the detailed information is shown in Table 3. In order to 
validate the travel time computed from mobile phone signaling data, we obtain the travel time reported 
from Auto Navi Map (https://www.amap.com/), which are shown in Table 4.

Table 3. Information of two activity nodes

NID Longitude Latitude Location

Activity Node 1 1098 121.214973 31.304360 Pinglu Rd.

Activity Node 2 5716 121.252368 31.328304 Beijing West Rd.
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Table 4. Travel time reported from Auto Navi Map

Trip Mode Car Subway Bus

Distance (km) 7.3 8 8.6

Travel Time 
(min)

Weekdays 14-17 31 43-50

Weekends 14-16 32 44-50

Considering that traffic condition varies with time, travel time clustering can be conducted under 
four situations, which are peak hours on weekdays, off-peak hours on weekdays, peak hours on week-
ends, and off-peak hours on weekends. Since it is a rare case for a traveler to walk more than 7 km, we 
hypothesize that the records with computed travel time larger than 65 minutes are noise in the data and 
they are removed from the dataset. Therefore, three trip modes including subway, car and bus are identi-
fied by Log-GMM clustering, and we define K=3.

The parameters of Log-GMM are estimated in four different cases and the results are listed in Table 
5. Figure 4 depicts the distribution of Log-GMM under different conditions. One can find the most 
trip mode between Pinglu Rd. and Beijing West Rd. is car. Subsequently, the subway ranked second, 
with the fewest number of activities on the bus. The clustering results using Log-GMM are listed in 
Table 6. Comparing the ratios of the three trip modes on weekdays and weekends, it can be seen that the 
number of car users on weekdays is less than the number of car users on weekends, while the number 
of users by public transit on weekdays is larger than the number of users by public transit on weekends. 
On working days, people may be more willing to take public transport due to the requirement to work 
on time and the shortage of parkinglots. However, on non-working days, most people do not have too 
many restrictions for entertainment, thus they would like to travel by car. As for the ratio of trip modes 
during peak hours and off-peak hours, it can be concluded that there is no much difference between 
them.
 

                         

(a) peak hours on weekdays			   (b) off-peak hours on weekdays
 	

                         

(c) peak hours on weekends	 		  (d) off-peak hours on weekends

Figure 4. Travel time clustering with Log-GMM under four situations
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Table 5. The estimated parameters of Log-GMM under four situations

Weekdays Weekends

k=1 k=2 k=3 k=1 k=2 k=3

Peak Hours

φ
k

0.64 0.34 0.02 0.61 0.34 0.05

μ
k

2.96 3.12 3.75 3.04 2.91 3.65

σ
k

0.01 0.02 0.03 0.01 0.03 0.10

Off-peak 
Hours

φ
k

0.49 0.48 0.03 0.70 0.26 0.04

μ
k

2.94 3.10 3.75 2.92 3.05 3.80

σ
k

0.02 0.02 0.04 0.01 0.02 0.05

Table 6. The clustering results using Log-GMM

Average Travel Time (min)
Weekdays Weekends

Car Subway Bus Car Subway Bus

Peak Hours 17.24 26.68 44.94 19.67 34.25 48.38

Off-peak Hours 16.06 25.71 44.26 19.15 31.27 47.34

The similar method was also proposed by Wang et al. (2010). They considered the probability to 
identify trip mode based on travel time collected from CDRs, and they utilized K-means unsupervised 
clustering algorithm to classify the samples. In this case, the results from the K-means clustering are 
listed in Table 7. To evaluate the performance of our method, we compare the travel time results with 
the travel time reported from Auto Navi Map. We define the error of trip mode identification as the 
differences between average time acquired from the clustering with Log-GMM and the travel time 
reported from Auto Navi Map. The errors are calculated for three methods (i.e., Log-GMM, GMM, 
K-means) as listed in Table 8, and one can see that clustering using Log-GMM and GMM perform 
better than using K-means algorithm. Moreover, Log-GMM performs better than GMM on weekdays 
while GMM slightly outperforms Log-GMM on weekends. Overall, Log-GMM is more suitable for 
trip mode inference.

Table 7. The clustering results using K-means

Average Travel Time (min)
Weekdays Weekends

Car Subway Bus Car Subway Bus

Peak Hours 19.12 27.31 42.93 20.22 30.01 46.19

Off-peak Hours 18.34 25.18 41.56 20.04 29.23 45.62
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Table 8. The errors of different methods in Travel Time (min)

Weekdays
Trip mode

Error
Car Subway Bus

Auto Navi Map 15.5 31 46.5 /

Log-GMM 16.65 26.20 44.60 2.62

GMM 18.18 26.72 41.96 3.83

K-means 18.63 26.23 42.09 4.10

Weekends
Trip mode

Error
Car Subway Bus

Auto Navi Map 15 32 47 /

Log-GMM 19.41 32.76 47.86 2.01

GMM 19.29 30.57 46.89 1.94

K-means 20.11 29.64 45.97 2.83

In order to avoid fortuity, we make two more experiments, in which the information is listed in 
Table 9 and Table 10. The results of the experiments are shown in Table 11. We can find on average the 
error of Log-GMM is smaller than that of GMM and K-means, which means Log-GMM performs bet-
ter. The largest error of Log-GMM is 6.32 min, which seems acceptable compared to the large variation 
of observed travel time.

Table 9. Information of two activity nodes of case 2 and case 3

Pair of Nodes NID Longitude Latitude Location

Case 2
Activity Node 1 3817 121.312549 31.1926370 518, Xianxia Rd.

Activity Node 2 1645 121.214973 31.3043600 Hongqiao Rd.

Case 3
Activity Node 1 164 121.605248 31.1428438 1926, Xiuya Rd.

Activity Node 2 8562 121.571744 31.2519540 685, Deping Rd.

Table 10. Travel time reported from Auto Navi Map of case 2 and case 3

Travel Time (min) Car Subway Bus

Case 2
Weekdays 12 23 27

Weekends 11 25 30

Case 3
Weekdays 21 44 88

Weekends 19 45 85
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Table 11. Errors of different methods in Travel Time (min)

Weekdays
Trip mode

Error
Car Subway Bus

Case 2

Auto Navi Map 12 23 27 /

Log-GMM 13.41 22.14 25.73 1.18

GMM 16.23 20.15 23.54 3.51

K-means 16.64 21.53 22.84 3.42

Case 3

Auto Navi Map 21 44 88 /

Log-GMM 21.87 42.54 71.35 6.32

GMM 23.54 40.21 68.21 8.70

K-means 22.58 39.12 64.25 10.07

Weekends
Trip mode

Error
Car Subway Bus

Case 2

Auto Navi Map 11 25 30 /

Log-GMM 18.34 26.12 32.58 3.68

GMM 17.25 23.87 27.21 3.39

K-means 16.58 21.26 26.14 4.39

Case 3

Auto Navi Map 19 45 85 /

Log-GMM 24.67 44.25 75.19 5.41

GMM 24.13 42.51 71.20 7.14

K-means 23.51 40.15 68.11 8.75
	

Though the validations from Auto Navi Map present acceptable results overall, the actual inference 
prediction cannot be acquired. To assess the inference performance, another experiment is conducted 
and more data are acquired. In the experiment, two activity nodes (i.e., Jing’an Temple and Longyang 
Rd Motorway Interchange) are selected and the location information as well as travel time information 
is shown in Figure 5. Subway has its own special cell phone base stations. In the case, the cell phone base 
station information of subway is obtained, which means the subway mode can be identified through 
base stations. However, the modes of car and bus cannot be distinguished. Therefore, inference perfor-
mance of subway can be assessed. The parameters of Log-GMM are estimated and the results are listed 
in Table 12. Figure 6 depicts the distribution of Log-GMM. The errors are also calculated for three 
methods as listed in Table 13, and clustering using Log-GMM performs better than using K-means 
algorithm and GMM. Moreover, the confusion matrices of trip mode inference using different methods 
are listed in Table 14. One can find that clustering using Log-GMM could infer subway mode with the 
recall of 53.77% and the precision of 84.25%, which outperforms GMM and K-means. The precision 
of inference using Log-GMM is acceptable. However, the recall of that is a bit low, which means that 
the method cannot identify most users by subway very well. Overall the trip mode inference using Log-
GMM can achieve the accuracy of 72.68%, which is acceptable considering the sparseness and quality 
of mobile phone signaling data.
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Figure 5. Detailed information of activity nodes

Figure 6. Travel time clustering with Log-GMM

Table 12. The estimated parameters of Log-GMM

k=1 k=2 k=3

φ
k

0.37 0.45 0.18

μ
k

3.32 3.89 4.55

σ
k

0.07 0.09 0.23
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Table 13. Errors of different methods in travel time (min)

Clustering Method Car Subway Bus Error

Auto Navi Map 17 50 116 /

Log-GMM 20.64 45.17 97.63 8.95

GMM 18.81 42.54 94.76 10.17

K-means 16.28 41.65 92.10 10.99

Table 14. Confusion matrices of trip mode inference using different methods

Actual modes
Inferred modes using Log-GMM

Recall
Car and Bus Subway

Car and Bus 191 20 90.52%

Subway 92 107 53.77%

Precision 67.49% 84.25% 72.68%

Actual modes
Inferred modes using GMM

Recall
Car and Bus Subway

Car and Bus 178 33 84.36%

Subway 105 94 52.76%

Precision 62.89% 74.02% 66.34%

Actual modes
Inferred modes using K-means

Recall
Car and Bus Subway

Car and Bus 182 29 86.26%

Subway 102 97 51.26%

Precision 64.08% 76.98% 68.05%

5	 Conclusion

The main goal of this paper is to infer trip mode from mobile phone signaling data. The proposed meth-
od includes activity nodes recognition, travel time computation, and clustering with Log-GMM. Then 
we select four different OD pairs to conduct experiments. In order to validate the accuracy of results, we 
firstly compare the computed travel time with travel time from Auto Navi Map. The largest error is 6.32 
min, which is acceptable compared to the large variation of observed travel time. We also obtain the cell 
phone base station information of subway in one case, which is utilized to assess the trip mode inference 
performance. Moreover, we compare our method (Log-GMM) with the previous methods (GMM, K-
means), and results indicate that Log-GMM performs better than GMM and K-means. The precision 
of inference using Log-GMM is acceptable. However, the recall of that is a bit low, which means that the 
method cannot identify most users by subway very well. Overall, trip mode inference using Log-GMM 
can be acceptable considering the sparseness and quality of mobile phone signaling data.

Trip mode identification is of importance for transportation planning and management. The pro-
posed method has advantages of easy calculation and realization and has better performance in identify-
ing bus, car, and subway, which can provide significant data reference for city transportation planning, 
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construction, and operation. 
In future, we plan to improve our method on the following aspects. Firstly, we will consider the 

traffic conditions corresponding to the trip. Secondly, we can extract velocity features of trips under the 
consideration of geographic information, which may be useful to improve the identification perfor-
mance. Finally, with the wide open of base station information of subway, the trip mode inferred may 
only include car and bus, which will improve the current inference performance.
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