
Abstract: A public bicycle system (PBS) is a promising countermeasure 
for the traffic issues induced by rapid urbanization, and it is widely 
acknowledged that the built environment has a significant impact 
on the use of a PBS. However, as the urban built-up area expands, 
different regions within a city can exhibit diverse characteristics. The 
spatial effects and differences among regions have been neglected by 
existing studies. To better understand how the urban built environment 
affects PBS ridership, this study conducts a quantitative analysis of the 
spatial relationship. It introduces a multi-scale geographically weighted 
regression (MGWR) to accomplish this task and conducts and evaluates 
a case study of the PBS in Nanjing, China. Six types of “D” variables 
(density, diversity, design, destination accessibility, distance to transit, 
and demand management) are involved in the analysis. The proposed 
method outperforms linear regression and standard geographically 
weighted regression (GWR) in terms of explanatory power. The 
modeling results demonstrate different influencing patterns between 
traditional downtown areas and newly built-up areas, especially for the 
density of population, road network, parking space, and various points 
of interest.

1	 Introduction

With the accelerating pace of urbanization in China, the soaring 
population in urban areas has posed unprecedented pressure on 
the sustainability of cities, especially traffic issues. Public bicycle 
system (PBS) is an important instrument to reduce the traffic 
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congestion and emission in urban transportation system, by shifting travelers from using private cars to 
shared mobility and public transport (Liu, Jia, Xie, & Liu, 2019). A station-based public bicycle system 
allows users to rent a bicycle from any docking station and return it to another without worrying about 
the conservation and maintenance of bikes (Shaheen, Guzman, & Zhang, 2010). By the end of 2018, 
nearly 2,700 bike-sharing schemes have been deployed around the world (DeMaio & Meddin, 2019). 
PBS can serve as a crucial complement to public transport services (Yang et al., 2018) and can be syner-
gized with strategies such as congestion pricing and park-and-ride (Liu, Wang, Zhou, & Cheng, 2017; 
Liu, Chen, Meng, & Kim, 2018; Shaheen & Rodier, 2018; Huang, Liu, Zhu, Kim, & An, 2019). By 
providing more bicycles to the public, commuters can be significantly encouraged to cycle to access 
public transport (de Souza, La Paix Puello, Brussel, Orrico, & van Maarseveen, 2017). As a travel mode 
for short-distance trips, PBS is able to solve the last-mile issue, thus enhancing the accessibility and sus-
tainability of the entire urban transportation system.

It is widely acknowledged that built environment has a significant impact on the mode choices of 
travelers (Boarnet & Crane, 2001; Cervero, 2002; Ding, Wang, Liu, Zhang, & Yang, 2017; Ewing & 
Cervero, 2010). As defined by Handy, Boarnet, Ewing, and Killingsworth (2002), built environment 
includes the urban design, land use and the transportation system, in which the patterns of human activ-
ities are highly related to the corresponding physical environment. Much effort has been devoted to in-
vestigating the connection between built environment and public bicycle ridership (Bachand-Marleau, 
Lee, & El-Geneidy, 2012; El-Assi, Salah Mahmoud, & Nurul Habib, 2017; Faghih-Imani & Eluru, 
2016; Zhang, Thomas, Brussel, & van Maarseveen, 2017), but few of them attempted to allow for the 
spatial heterogeneity and nonstationarity. The assumption of stationarity over space has long been real-
ized inappropriate (Anselin, 1995; Bhat & Zhao, 2002; Ding, Wang, Yang, Liu, & Lin, 2016). In other 
words, it is unreasonable to expect that one factor will have exactly the same influence on the dependent 
variable in different locations. For example, the opening of a new shopping mall in the city center will 
induce much more traffic demand than that in the suburbs. Neglecting the local variations might cause 
reduced reliability of model and misinterpretation of the relationship between study variables (Qian 
& Ukkusuri, 2015). Geographically weighted regression (GWR) was proposed to deal with spatial 
nonstationarity (Brunsdon, Fotheringham, & Charlton 1996). However, GWR makes the assumption 
that all the explanatory variables share the same spatial scale. Also, it should be noted that the process of 
urbanization usually comes along with the expansion of the built-up area. It can be inferred that built 
environment elements can generate diverse effects on PBS usage in different locations of a large city. In-
stead of explaining the movements of urban mobility on a universal scale, the multi-scale geographically 
weighted regression (MGWR) allows the parameters to arise from processes of various spatial scale, so as 
to capture more accurate spatial relationship (Fotheringham, Yang, & Kang, 2017).

The aim of this study is to investigate the multi-scale spatial relationship between the urban built 
environment and the ridership of PBS. Through the introduction of the MGWR model, we manage to 
bring a new perspective to this topic. The common assumption holds by ordinary linear regression–built 
environment factors impact public bicycle usage in the same manner across the whole city–is relaxed. 
Moreover, the spatial variation of different factors is allowed to vary in scale compared with traditional 
GWR. To validate our hypothesis and evaluate the modeling results, a case study of PBS is conducted in 
Nanjing, China. The variations of those factors over space are verified and visualized, which can provide 
more reliable guidance to the development of PBS.

The following of this paper is organized as follows. In Section 2, the literature is reviewed to extract 
important factors of the urban built environment that might affect public bicycle usage, including the 
six D variables, i.e., the density, diversity, design, destination accessibility, distance to transit, and de-
mand management. Then, Section 3 elaborates the formulation and estimation of the MGWR model. 
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The data and results are presented and analyzed in Section 4 and 5 respectively. Finally, Section 6 con-
cludes the major findings and provides directions for future research.

2	 Literature review

Many existing studies have attempted to investigate the influencing factors of public bicycle ridership, 
which can be split into three categories, namely personal preference, temporal variation, and spatial 
features. The studies for these three categories are reviewed as follows.

First, for personal preference, some researchers based their studies on an individual perspective 
to better understand the effects of personal predilections and socio-economic factors. It was found by 
Schoner and Levison (2013) that potential users of the public bicycle are sensitive to the walking dis-
tance to the docking station, and prefer longer cycling distance to walking distance. Raux, Zoubir, and 
Geyik (2017) also highlighted that the proximity to the docking stations positively affects the likelihood 
of an individual to use the bike based on an analysis of the bike sharing scheme Velo’v in Lyon. In a 
survey conducted by de Souza et al. (2017) in Brazil, the bicycle infrastructure was found to be one of 
the critical barriers for bicycle use as a feeder to public transit.

Second, regarding temporal variation, the usage patterns are found to be associated with weather 
conditions, holidays and operating time. The analysis by Gebhart and Noland (2014) suggested that 
high precipitation, wind speed, humidity and low temperature lead to fewer PBS ridership. The negative 
impacts of adverse weather conditions are also verified by Kutela and Teng (2019) as well as Frade and 
Ribeiro (2014). Without considering extreme temperatures, El-Assi et al. (2017) concluded a simple 
positive relationship between temperature and trip demand. Due to commuting demand, the ridership 
of weekdays is observed to be larger than weekends, and the highest usage usually shows up in eve-
ning peaks (Faghih-Imani, Hampshire, Maria, & Eluru, 2017; Faghih-Imani & Eluru, 2016; O’Brien, 
Cheshire, & Batty, 2014). Moreover, the study by Kutela and Teng (2019) also found that longer years 
in operation can contribute to increased daily ridership.

Third, spatial features are usually considered in the form of built environment. Research on the 
spatial relationship of the built environment and PBS ridership are classified and listed in Table 1. As 
mentioned in Section 1, the built environment is well acknowledged to have a tangible impact on PBS 
usage. The measures of the built environment were summarized by Cervero and Kockelman (1997) as 
“three Ds,” i.e., density, diversity, and design. Beyond the classical “three Ds,” three more Ds were later 
introduced, including destination accessibility, distance to transit, and demand management (Ewing & 
Cervero, 2010). As Ewing and Cervero (2010) pointed out, the “Ds” are merely rough categorization 
without determined boundary. Hence it is possible that one factor can be placed under multiple classes. 
It should also be noted that only factors relating to the built environment are included in the table.

Among all built environment factors, density is the most widely recognized. Almost every study 
took population density into consideration, though it was found to be insignificant in the research of 
Mateo-Babiano, Bean, Corcoran, and Pojani (2016). Points of interest (POI) is another class of repre-
sentative factors, including commercial area (e.g., stores, shopping malls), employment (e.g., compa-
nies), residential area, as well as recreational area (e.g., parks, cinemas).

Road network density also plays an essential role in generating PBS usage. Both Faghih-Imani, 
Eluru, El-Geneidy, Rabbat, and Haq (2014) and Zhang et al. (2017) split the roads into major roads 
and branch roads. The results are similar, that branch roads positively impact the ridership.

Furthermore, competition among adjacent docking stations was recognized (El-Assi et al., 2017; 
Zhang et al., 2017; Zhao, Deng, & Song, 2014). Diversity was only explicitly investigated in one lit-
erature, and was found to be positively correlated to ridership (Zhang et al., 2017). Oddly, they labeled 
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each docking station with a unique land-use type in another research (Zhang, Brussel, Thomas, & van 
Maarseveen, 2018). The reason why this variable is not included in most studies might be the overlap 
with POI density.

Research pertaining to road design mainly focused on cycling infrastructure. Many evidence has 
shown the effect of bike lanes in attracting travelers to PBS (Buck & Buehler, 2011; Mateo-Babiano et 
al., 2016; Wang et al., 2018; Zhang et al., 2017). It was also observed that high elevation, which usu-
ally comes with steep slopes, is a hindrance to cycling (Faghih-Imani et al., 2017; Mateo-Babiano et al., 
2016).

The other three “Ds” correspond with the location of the station and neighboring transportation 
facilities. Typical measure in prior works for destination accessibility is the distance to the city center. 
According to the study on BIXI in Montreal by Faghih-Imani et al. (2014), stations locating at the 
periphery of the city are less active compared to those near the central business district (CBD). This is 
consistent with the results of Zhang et al. (2017).

Also, a reciprocal relationship exists between cycling and public transit, hence the reason for exam-
ining the impacts of public transit on PBS (Kager, Bertolini, & Brömmelstroet, 2016). People tend to be 
attracted to combine public bicycles and transit. In the surveys conducted by Lin et al. (2018), shorter 
distance to transit stations will decline the use of public bikes. However, this conclusion was challenged 
by Tran, Ovtracht, and d’Arcier (2015) and Zhang et al. (2017), and they attributed the insignificance 
of the transit system to small city scale and slightly higher bus fare. In contrast, in the research of Tran et 
al. (2015), railway stations showed a significant relationship with PBS ridership for its role in commut-
ing. Finally, no existing study managed to investigate the potential connection between public bicycle 
and parking lots.

As to the modeling tool, most existing studies drew their conclusions using linear regression. The 
major disadvantage of linear regression in this task is that it fails to give consideration to the effect of 
spatial dependency. The planning and management of bike-sharing systems, including siting of docking 
stations and repositioning of bicycles, usually requires understanding the heterogeneity of cycling de-
mand over space. A few studies attempted to take spatial effects into consideration. Zhang et al. (2017) 
included a spatially lagged dependent variable in their model. This practice, however, merely takes the 
PBS demand in the vicinity of a station as an additional input. Similarly, the spatial lag model and spatial 
error model employed by Faghih-Imani and Eluru (2016) are still incapable of reflecting the changes 
in spatial relationship over space. Geographically weighted regression (GWR) is precisely designed for 
this purpose (Brunsdon et al., 1996), which is able to incorporate the spatial autocorrelation in a given 
area, and has been employed to study the impact of built environment on transit ridership (Qian & 
Ukkusuri, 2015). Further, the standard GWR assumes the spatial relationships are on the same scale. 
However, in reality, it is common that some of the parameters are homogeneous across space whilst the 
others are heterogeneous. To overcome this defect, in this paper, a multi-scale GWR (MGWR), which 
allows the scale for the coefficients of each covariate to vary, is utilized to model the relationship between 
built environment and public bicycle ridership. 
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3	 Methodology for modeling spatial relationship

3.1	 Multi-scale geographically weighted regression

In order to incorporate spatial variations of the relationship between variables, an intuitive solution is 
to allow the coefficients to vary across the study area (Brunsdon et al., 1996). Geographically weighted 
regression (GWR) is an extension of the traditional linear regression. Spatial weights are introduced into 
the model to describe the spatial relationship. Denote the location of observation point as ( pi  , qi ). The 
coefficients βk , which are fixed values for all the observations, are assumed to be functions of geographi-
cal locations, denoted by βk ( pi  , qi ). The general formulation of GWR is provided in Equation (1):

	 (1)

where m denotes the number of explanatory variables, n denotes the number of observations, and εi  is 
the error term.

The coefficients of the GWR can be estimated through the weighted least square method. Denote 
the dependent variables as Y=[ y1 , y2  ,…, yn ]' and the explanatory variables as X=[ X1' , X 2' ,…, Xn' ]', where 
Xi =[ x i,1  , x i,2 ,…, xi,m ]. The local coefficients can be given by Equation (2):

	 (2)

where Wi = diag (wi1 ,wi2  ,…, win ) is a diagonal weighting matrix.

However, the regression coefficients do not necessarily change according to their geographical loca-
tions. In other words, some of them might have constant effects instead of being relatively non-stationary 
over space. By allowing coefficients to be either global or local, semi-parametric geographically weighted 
regression (SGWR) model, also known as mixed GWR model, can be formulated as Equation (3):

	 (3) 

where βk denotes local coefficient, and γl denotes global coefficient.

Multi-scale geographically weighted regression (MGWR) further extends the GWR by relaxing 
the assumption of all the model coefficients vary at the same spatial scale (Fotheringham et al., 2017). 
A unique bandwidth b�k will be assigned to each dependent variable. The formulation of MGWR is 
given in Equation (4).

	 (4)
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3.2	 Scale in estimation

To allow for the multiple spatial scales of coefficients, MGWR selects a unique bandwidth for each ex-
planatory variable. In this paper, the Gaussian weighting kernel is utilized to construct the spatial weight 
matrix. This kernel is set to adaptively interact with a given number of nearest neighbors. An adaptive 
Gaussian kernel is given by Equation (5):

	 (5)

where dij measures the distance between two points ( pi  ,qi ) and ( pj  ,qj ), and hi is the longest distance 
from current point ( pi  , qi ) to its neighbors. The optimal number of neighbors (i.e., the optimal band-
width) for the kernel is determined through the golden section search. The criterion of the search is the 
corrected Akaike Information Criterion (AICc). Denote the estimation for the standard deviation of the 
error term as σ  ̂, defined as Equation (6). The bandwidths that generate the lowest AICc are chosen as 
the optimal bandwidths:

					     (6)

where S denotes the hat matrix, and tr(.) represents the trace of a matrix.

3.3	 Model calibration

The calibration method for GWR is not applicable in the MGWR case, in that the spatial weight-
ing matrices for the explanatory variables at one location are different. Instead, the MGWR can be 
viewed as a generalized additive model (GAM), where the dependent variable can be written as the sum 
of multiple smooth functions of the explanatory variables. That is, yi =∑m

k = 0 fk ( xi ,k ) + εi  , where 
fk ( x i,k ) = βk ( pi  , qi ; bwk ) x i,k is the additive term. One solution to GAM is the back-fitting algorithm 
(BF). Fotheringham et al. (2017) managed to adapt the BF algorithm to solving MGWR.

Assuming all of other additive terms are already known, the BF algorithm recursively calibrates 
each additive term until convergence. To boost the calibration speed, a standard GWR is pre-fitted to 
obtain a series of initial additive terms. Based on the initialization, the residual of the model can be calcu-
lated as ε = y -∑k fk . Then, for a specific dependent variable xj ,  GWR can be formulated as Equation (7).

	 (7)

By solving the GWR, a new bandwidth bwj and a set of corresponding parameters can be estimated, 
whereby the fj can be updated. Following this process, the bandwidths and the coefficients of all the 
covariates will be updated in each iteration.
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4	 Data description

4.1	 Data source

A case study was conducted based on the cycling data of PBS in Nanjing, China, provided by Nanjing 
Public Bicycle Company. Nanjing PBS (NPBS) was started in 2013 and has developed to cover all the 
municipal districts in Nanjing. Five operating sub-regions, namely Core Urban District, Pukou District, 
Jiangning District, Gaochun District, and Lishui District, run independently from each other. The 
analysis of our research is based on the data of Core Urban District.

 

Figure 1. Docking stations of NPBS in the core urban district

The extracted dataset was collected from July to December in 2016, with 179 days (5 days are miss-
ing due to system failure), 1,064 docking stations, and more than 22 million trip records in total. The 
dataset contains the temporal information (start time and end time) as well as the spatial information 
(latitude, longitude and name of start and end stations) of each trip. Figure 1 demonstrates the location 
of PBS docking stations in the Core Urban District, where each station is illustrated as a red dot. The 
basic geometric data, including the road network and the POIs, were provided by Nanjing Institute of 
City & Transport Planning.

The raw dataset was cleansed to remove the abnormal trips. Firstly, only trips with their cycling 
duration between 1 minute to 24 hours were reserved, in order to exclude the influence of system 
failure. Secondly, docking stations with no trip records were removed. Thirdly, to alleviate the impacts 
of unpleasant weather, trips made on days with heavy rain or snow were removed. The data size after 
validation and cleansing is 19,708,241.

4.2	 Variable selection

The average hourly pick-ups are used as the dependent variable. The trip dataset of working days was 
first aggregated by the morning peak (from 7:00 a.m. to 9:00 a.m.), the evening peak (from 5:00 p.m. 
to 7:00 p.m.) and the off-peak (other time periods beyond peak hours). The Pearson correlation coef-
ficients (PCC) between the three subsets of data were calculated, as listed in Table 2. Coefficients larger 
than 0.9 are marked in bold. The pick-ups and drop-offs in peak hours are highly correlated with their 
opposite behaviors in another peak, indicating the vital commuting function of NPBS. It can also be 
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observed that the cycling demand at off-peak hours is similar to the evening peak. Therefore, only 
the pick-ups of the two peak periods are modeled. Furthermore, the pick-ups and drop-offs on non-
working days (from 6:00 a.m. to 11:00 p.m.) have a PCC of 0.991. Hence, only the average of hourly 
pick-ups on non-working days is later modeled. The summary of the selected dependent variables is 
presented in Table 3. In Figure 2, the distribution of the raw dependent variables is plotted on the first 
row, while that of the log-transformed variables is plotted on the second row. Considering the long tails 
of the distributions, the logarithms of average pick-ups were finally taken as the dependent variables to 
lower the risk that the residuals of the models violate the normality assumption. As plotted in Figure 2, 
the dependent variables are then transformed as log( 1+y ), where y denotes the number of pick-ups.

Table 2. Pearson correlation coefficients of the trip data on different time periods*

	
Drop-off

(off)

Pick-up

(off)

Drop-off

(p.m.)

Pick-up

(p.m.)

Drop-off

(a.m.)

Pick-up

(a.m.)

Pick-up (a.m.) 0.876 0.751 0.943 0.622 0.601 1.000

Drop-off (a.m.) 0.719 0.881 0.611 0.968 1.000

Pick-up (p.m.) 0.782 0.937 0.671 1.000

Drop-off (p.m.) 0.953 0.820 1.000

Pick-up (off) 0.928 1.000

Drop-off (off) 1.000

* All the values are statistically significant at the 99% confidence level.

Table 3. Descriptive statistics of the average hourly pick-ups

Pick-up

(a.m.)

Pick-up

(p.m.)

Pick-up

(n.w.)

mean 9.545 8.759 1.571

std 10.799 11.746 1.554

min 0.000 0.000 0.002

lower quartile 2.007 1.845 0.447

median 6.457 5.227 1.182

upper quartile 13.338 11.162 2.216

max 100.855 119.224 11.452
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Figure 2. Distribution of the dependent variables

The built environment variable selection is based on the six D variables. Thirteen factors are finally 
incorporated in this study, as listed in Table 4. Based on prior research (see Table 1), the density variables 
considered in our analysis include the population density, POI density, and neighboring docking station 
density. Specifically, the POIs used in the analysis include the commercial establishment, office build-
ing, residential communities, schools, and recreational parks. Zonal population statistics were extracted 
from the yearbook published by Nanjing Municipal Bureau of Statistics (2017). The selected POIs are 
aggregated and counted using a 300-meter buffer, which is similar to prior works (Faghih-Imani et al., 
2014; Tran et al., 2015). An oversized buffer might not be able to reflect the unique built environment 
around a specific docking station. 300m is an acceptable threshold of walking distance to a docking sta-
tion, as the first quantile of cycling distance is merely 900m (Euclidean distance). 

Table 4. Descriptive statistics of built environment variables

mean std min lower
quartile

median upper
quartile

max

Population density 10905.58 8972.83 1815.49 3241.46 5558.65 20400.41 23529.19

Commercial density 58.20 84.03 0.00 9.00 32.00 74.00 789.00

Employment density 22.92 42.43 0.00 2.00 8.00 21.00 427.00

Residential density 5.91 4.92 0.00 2.00 5.00 9.00 29.00

School density 1.53 1.70 0.00 0.00 1.00 2.00 10.00

Park density 0.41 1.00 0.00 0.00 0.00 0.00 8.00

ke station density 1.40 1.43 0.00 0.00 1.00 2.00 8.00

Land-use diversity 2.16 0.97 0.00 2.00 2.00 3.00 4.00

Bus station density 7.91 6.27 0.00 3.00 7.00 12.00 32.00

Metro station density 0.14 0.38 0.00 0.00 0.00 0.00 2.00

Branch road density 12885.63 8845.32 12.37 6192.58 10961.32 17835.24 40047.26

Bike lane density 37507.40 14464.37 5438.13 27148.96 36866.17 44844.40 82691.39

Parking space density 3.12 3.62 0.00 0.00 2.00 4.00 23.00
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Unlike the POI density, the density of the road network, including bike lanes, is calculated on 
the basis of a 1,500-meter buffer. The rationale behind this practice is that distant establishments do 
not directly affect the travel mode choice and docking station choice of travelers. However, the roads 
are always involved in the cycling trip of travelers, thus cannot be ignored. Zhang et al. (2017) picked 
1,000 meters as the buffering threshold. Considering the median Euclidean trip distance of our dataset 
is 1,524m, 1,500m is appropriate as the buffer for roads in our study. Note that the main road density 
is not included in our analysis in that it has a PCC of 0.966 with bike lane density. In Chinese cities, 
especially big cities like Nanjing, separated bike lanes are usually constructed along with primary and 
secondary roads following the suggestions of the urban road design manual, leading to such a high 
correlation. Likewise, hotel density is also not included, due to the high correlation with commercial 
establishments.

The land-use diversity, which is often neglected in the existing literature on PBS, is measured 
through the count of land-use types within the 300-meter buffer. There are six types of land use that are 
considered, including commercial land, residential land, public service land, industrial land, transporta-
tion hub and green space. Destination accessibility used to be measured as the distance to the city center. 
This measure is abandoned in this research as the definition of the city center is ambiguous and Nanjing 
has developed into a multi-core city with distributed commercial centers. Therefore, it is unreasonable 
to represent the city center as a single point.

The locations of public transport stations were collected in 2016 using the API of Amap (2016). 
The public transport system of Nanjing is comprised of bus, metro, and tram. As the tram was still an 
experimental travel mode and operated in the southern part of Jianye District, where very few PBS 
stations were installed, it was not included in our analysis. Within the study area, there were 5623 bus 
stations and 67 metro stations in total. By 2016, six metro lines (i.e., Line 1, 2, 3, 10, S1 and S8) had 
been put into operation.

The parking space density is another factor that was not investigated in prior works. Though PBS 
was first promoted to enhance the experience of public transport, it can be interesting to examine 
whether cars can be integrated with PBS.

5	 Result analysis

5.1	 Model comparison

For each dependent variable, three models, namely LR, GWR, and MGWR, are fitted on the same 
explanatory variables. All the explanatory variables were normalized before inputting into the models. 
The regressions are performed using the package mgwr in Python (Oshan, Li, Kang, Wolf, & Fother-
ingham, 2018), and the modeling results are demonstrated in Table 5. Note that the park density is 
excluded from the inputs since it is statistically insignificant in all models. It can be observed that the 
MGWR model significantly outperforms the other two models. For all the three dependent variables, 
approximately 75% of the variance can be explained by the MGWR models. In comparison, only 
47.4%, 57.2% and 53.3% of the variance can be explained by global linear regression models for the 
three targets respectively. As to the AICc, the criterion used for bandwidth searching, the three MGWR 
models are much lower than the other two models. Regarding the residual sum of squares, the MGWR 
models reduce those of LR models by half, and are also much lower than the GWR models. 

The spatial autocorrelation of residuals is also tested using the index of Moran’s I. The global Mo-
ran’s I can be calculated using the following formula, 

	 (8)
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where wij denotes the spatial weight between two points (pi , qi ) and ( pj  ,qj ), S0 =∑n
i =1 ∑

n
j = 1 wij  is 

the sum of spatial weights between any two locations, zi denotes the difference between the observed at-
tribute of a point and the average value of the whole region. For the fitted LR models, the global Moran’s 
I of their residuals are 0.230, 0.188 and 0.276, respectively, indicating relatively high spatial autocorrela-
tion. As to the MGWR models, the global Moran’s I of their residuals are much lower (0.041, 0.074 and 
0.054 respectively), implying that the spatial heterogeneity is successfully incorporated.

The descriptive statistics of the estimated parameters of the three MGWR models are given in Ap-
pendix A. As elaborated in Section 3, a GWR/MGWR model will give a set of estimated coefficients 
for each location in the study area. In our case, there are in total 1,025 docking stations, indicating that 
there will be 1,025×13=13,325 estimated values for each model. Rather than listing all these values in a 
table, the results are illustrated in maps, and are further discussed in the following section.

Table 5. Descriptive statistics of all the fitted models

Dependent

Variable

Pick-up

(a.m.)

Pick-up

(p.m.)

Pick-up

(n.w.)

Model LR GWR MGWR LR GWR MGWR LR GWR MGWR

Residual sum 536.146 424.505 254.164 412.104 335.971 218.474 126.592 108.046 69.090

of squares -1122.291 -1002.631 -739.747 -987.436 -882.757 -662.200 -382.529 -301.342 -72.182

Log-likelihood 2270.582 2071.105 1566.836 2000.873 1831.358 1403.764 791.057 656.301 225.668

AIC 2272.998 2073.359 1570.816 2003.288 1833.612 1407.044 793.473 657.796 229.111

AICc 0.480 0.588 0.754 0.577 0.655 0.776 0.539 0.606 0.748

R2 0.474 0.575 0.743 0.572 0.644 0.767 0.533 0.596 0.738

Adj. R2 0.474 0.575 0.743 0.572 0.644 0.767 0.533 0.596 0.738

Observations 1025

Covariates 13

5.2	 Analysis

The estimated coefficients of the three MGWR models are illustrated in Figure 3 through Figure 9, 
where the color bar to the right of each figure shows the scale and range of estimated values. Divided by 
white, positive values and negative values are marked by red and blue respectively. Circles and triangles 
are used to assist the identification of positiveness for the color blind. Also, the estimated values that are 
insignificant at the 95% confidence level, i.e., p-values greater than 0.05, are labeled with grey outlines 
in the figures.

The discrepancy between the estimated coefficients of models in the morning peak and the evening 
peak has verified the commuting function of PBS. Figure 3 shows the coefficients of residential commu-
nity density and employment density. It can be clearly observed that the residential community density 
strongly correlates with the PBS ridership in the morning peak, while in the evening peak, the relation-
ship becomes mostly neutral. The average estimate has dropped from 0.329 in the morning to 0.004 in 
the afternoon. We can infer that the public bicycle is one of the preferred travel modes for home-based 
commuting trips. In contrast, as to the employment density, negative coefficients can be observed in the 
major part of the city during the morning peak. Positive relationship between the employment density 
and PBS ridership shows up in the outer ring of the city in the evening peak. The mean of its estimated 
coefficients increased from -0.110 in the morning peak to 0.046 in the evening peak, indicating that the 



459Exploring multi-scale spatial relationship between built environment and public bicycle ridership 

employment density has a larger influence on PBS usage after work. The influencing pattern on non-
working days are similar to that of the morning peak, but the absolute estimates are much smaller due 
to less overall ridership.
 

Figure 3. Estimated coefficients of the residential density and the employment density
 

Figure 4. Estimated coefficients of the commercial density and the school density

Commercial establishments and schools are also two potential motivators for cycling. From Ap-
pendix A, it can be noticed that the coefficients of these two factors are both mostly positive. This result 
can also be easily noticed in Figure 4, where the colors of points are red across almost the entire city. As 
can be expected, the impact of the commercial density is rather significant, and such impact is consistent 
in all three studied time periods. Although higher school density also leads to higher PBS ridership, its 
impact is much smaller than that of the commercial density.
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Figure 5. Estimated coefficients of the public transport density

Similarly, the public transport density shows a positive impact on bike usage regardless of the loca-
tion of docking stations, as shown in Figure 5. This finding is discrepant with the results concluded by 
Zhang et al. (2017) but is consistent with El-Assi et al. (2017) and Faghih-Imani and Eluru (2016), 
which might depend on the development of the local public transport system. The figures demonstrate 
that the metro is a powerful booster for PBS ridership. In all the examined time periods, a stationary 
positive relationship can be observed in the whole city. It proves that PBS has met the expectations as a 
feeder to the metro system in response to the last-mile problem. The relationship with city buses is simi-
larly homogeneous, being always positive except for Jianye District during the evening peak. However, 
the association of bus stations and PBS usage is not comparable with that of metro stations. This can 
possibly be attributed to the relatively mature planning of the bus system in Nanjing, the station density 
of which is adequate to cover the daily demand. Moreover, the bus stops are designed to be placed near 
metro stations and parking lots. In other words, the city bus can compete with PBS to some extent as a 
connector to fill the gap of the last mile. Therefore, if the competence of PBS is weaker than buses, like 
the Qixia District, where PBS station density is relatively low, it is likely that residents select buses as the 
traveling mode.
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Figure 6. Estimated coefficients of land-use diversity and the population density

Land-use diversity, which is frequently discussed in research pertaining to build environment (Ding 
et al., 2016), was only examined in one PBS-related study (Zhang et al., 2017). Similar to the school 
density and the bus stop density, a complex composition of land-use types can slightly induce more PBS 
ridership, especially in Gulou District, Xuanwu District and Qinhuai District. However, results indicate 
that the population density in these three districts does not lead to larger cycling demand. For other 
districts, where the densities of various POIs are much lower, the population density is the major con-
tributor to bike usage. This can be attributed to the large size of residential communities in these newly 
built-up areas. A docking station here may serve much more residents than another station in CBD even 
though their values of the residential density are the same.
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Figure 7. Estimated coefficients of the road network density

Bike lanes have been widely acknowledged to be a contributor to generate more ridership, as an 
unpleasant cycling environment naturally discourages traveler from riding bicycles. The results are sta-
tistically significant in most locations, as demonstrated in Figure 7. The morning peak on working days 
shares a similar pattern of relationship with non-working days, with the city being split into two parts 
of opposite relationships. An interesting finding is that in the Jianye District, bike lanes contribute more 
to PBS ridership, while in other locations, the branch roads show a positive connection with cycling. 
It should be noted that the Jianye District is a newly developed district of Nanjing, and the traditional 
downtown area lies in the central area. Considering that the citizens who live in the traditional down-
town are usually familiar with those branches, they prefer to take shortcuts which could save their 
traveling time. Nevertheless, the bike lanes become the predominant contributor in the evening peak, 
possibly due to the relatively dim lighting conditions in the evening.
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Figure 8. Estimated coefficients of the parking space density

Being neglected by most studies, parking spaces display a positive association with cycling dur-
ing most of the time in central urban areas, according to Figure 8. For docking stations surrounded 
by adequate parking spaces in suburbs, they are more likely to fail in the competence with cars during 
morning peaks since most of the residents commute for a relatively long distance. In contrast, during 
evening peaks and on non-working days, the parking spaces consistently show a positive relationship 
with public bike ridership, which leads to an intuitive conjecture of Park-and-Bike (P&B). That is, trav-
elers park their cars where there are parking spaces and then switch to PBS to reach their destinations. 
However, note that it remains unknown whether the driving force is truly parking spaces or some other 
factors that highly associate with them. It is therefore recommended that further research be conducted 
to investigate the existence and viability of P&B.

 

Figure 9. Estimated coefficients of the docking station density
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Strong evidence reveals the existence of competition among neighboring docking stations accord-
ing to Appendix A and Figure 9. Unlike PBS in western cities like BIXI (Montreal) and Citi Bike (New 
York), many docking stations are often installed side by side in NPBS. For example, four docking 
stations are arranged at the four corners of the intersection of Shanghai Road and Hanzhong Road. 
Intuitively, people tend to pick the closest station when faced with multiple choices. Each station will 
attract travelers from the others nearby, leading to lower average ridership, though their sum can be high.

6	 Conclusion

This paper addressed the impacts of spatial heterogeneity on built environment and PBS ridership. To 
introduce a spatial perspective on the effects of the built environment, the MGWR was adopted and 
evaluated on PBS data. The results show that the MGWR outperforms the linear regression and stan-
dard GWR, which has verified our assumption that inherent non-stationarity exists in the estimation 
of parameters across space. The modeling results demonstrate different influencing patterns between 
the traditional downtown area and newly built-up areas. Disparate effects of residential communities, 
employment, and school, is recognized in the morning peak and evening peak, indicating the commut-
ing function of PBS. Population density does not show a strong influence on PBS usage in central areas, 
but it is the major motivator of public bike usage in newly developed districts. There is also competition 
between adjacent PBS stations. The significant positive impact from the metro as well as the bus can also 
be observed across the whole city. Additionally, in traditional downtown areas, bike lanes do not have 
a comparable positive effect as outer areas. Instead, more trips were made where there are dense branch 
roads. Moreover, an unexpected high association between PBS usage and the parking lots is observed. 
These findings are valuable in the promotion and planning of PBS. Planning of PBS stations should 
consider the integration with public transport. Although bike lanes make little contribution to cycling in 
traditional downtown areas, renovation of chaotic aged branch roads is required to improve the cycling 
experience of travelers.

In conclusion, spatial effects should not be neglected when dealing with built environment, and 
the MGWR is robust in unveiling both the heterogeneous and homogeneous spatial relationship across 
the city. It should be noted that there are huge discrepancies among cities with respect to built environ-
ment and the behavior patterns of the citizen. For future work, understanding the shared functioning 
mechanism of built environment on PBS usage between cities would be meaningful. Also, as suggested 
by the results, further investigation into the feasibility of Park-and-Bike in China should be conducted.
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