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Planning a high-frequency transfer-based bus network: How do 
we get there?

Abstract: As cities have grown more dispersed and auto-oriented, 
demand for travel has become increasingly difficult to meet via public 
transit. Public transit ridership, particularly bus ridership, has recently 
been on the decline in many urban areas in Canada and the United 
States, and many agencies have either undergone or are planning 
comprehensive bus network redesigns in response. While comprehensive 
bus network redesigns are not novel to public transit, network redesigns 
are commonly being considered in cities to optimize operational 
costs and reverse downward trends in transit ridership. For cities 
considering a comprehensive bus network redesign, there is currently no 
comprehensive easy-to-follow planning process available to guide cities 
through such a major undertaking. In light of that, this study presents 
a methodology to guide transport professionals through the planning 
process of a bus network redesign, using Longueuil, Quebec, as a case 
study. Currently, Longueuil operates a door-to-door network, and the 
goal is to move to a transfer-based, high-frequency service while keeping 
the existing number of buses constant. A variety of data sources that 
capture regional travel behavior and network performance are overlaid 
using a GIS-based grid-cell model to identify priority bus corridors. 
A series of analyses to measure and quantify anticipated and actual 
improvements from the proposed bus network redesign are conducted, 
including coverage analysis, change in accessibility to jobs, and travel 
time analysis. Accessibility to jobs was the key performance measure used 
in this analysis and is presented as a useful tool for planners and transit 
agencies to obtain buy-in for the proposed plan. This methodology 
provides transport professionals with a flexible and reproducible guide 
to consider when conducting a bus network redesign, while ensuring 
that such a network overhaul maximizes the number of opportunities 
that residents can access by transit and does not add an additional 
burden to an agency’s operating budget.

Keywords: Public transport, bus network planning, bus network rede-
sign, direct-service bus network
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1	 Introduction

Public transit ridership has been on the decline in major North American regions (Boisjoly et al., 2018), 
and in 2018 bus ridership in the United States reached its lowest level since 1973 (National Academies 
of Sciences, 2020). In response, several cities have undertaken bus network redesigns, whereby transit 
agencies fundamentally alter the structure and organization of their bus network. Results of a survey of 
36 cities in Canada and the United States whom either recently conducted a bus network redesign or 
are planning a redesign found that the national trend toward redesigns is motivated by three common 
themes (National Academies of Sciences, 2019). First, agencies have determined that existing route 
structure is not well aligned with present travel patterns and rider expectations. Second, agencies are de-
termined to improve network efficiency. Third, in response to declining transit ridership in recent years, 
agencies are looking for strategies to reverse this trend and ideally boost ridership. 

For transit systems to be aligned with existing and potential users expectations, a minimal level 
of service must be provided (Badia, Estrada, & Robusté, 2016). While there is a common assertion 
that rail is inherently more attractive than bus, Ben-Akiva and Morikawa (2002) refuted this theory 
and found that high performance bus service with similar frequency and service attributes as rail (i.e., 
exclusive right-of-way) have similar ridership attraction. Service attributes associated with the common 
door-to-door bus network structure, or direct-service network, typically embody neither of these service 
attributes. A door-to-door bus network is designed to connect origin-destination pairs directly, with 
little need for transferring. Due to the existing sprawl in North American cities, providing door-to-door 
service requires circuitous routing, thereby extending travel times, and extensive coverage acts as a trad-
eoff for service frequency. Currently many cities are wishing to adopt a high-frequency transfer-based 
network, which have been demonstrated to improve operational efficiency and effectiveness (more us-
ers) in some North American cities (Brown & Thompson, 2008; Thompson & Matoff, 2003). In 
this paper, we present a practice-ready and easy to adopt methodology to guide transport professionals 
through the process of conducting a comprehensive bus network redesign, with the specific objective of 
transitioning a door-to-door bus network to a high-frequency transfer-based network, using Longueuil, 
Quebec, as a case study. The proposed bus network will maintain the number of buses in the existing 
network to ensure that the recommended network does not add an additional burden to the agency’s 
operating budget. 

A full network redesign traditionally progresses through three phases, which are iterative and may 
be performed in various sequences (National Academies of Sciences, 2019). Phase 1 involves gather-
ing data (i.e., conduct a market analysis, establish or revise bus route and network service standards 
and budgetary/fleet resource limits), (2) Analyze and recommend (i.e., collect and analyze route and 
network performance data, consider service performance standards, and make recommendations for 
service changes), and (3) Engage the public (i.e., hold public engagements and revise recommendations 
based on public input). Our analysis exclusively focuses on the second phase of the bus service planning 
process, the recommendation of new bus routes, and recognizes that considerable additional work must 
also be conducted to successfully plan a network redesign.

2	 Background

Transit network structure can be broadly categorized as either direct-service or transfer-based (Vuchic, 
2005). Direct-service models, commonly referred to as a door-to-door model, connect suburban and 
inner-city areas with a central location, typically the downtown core. Typically, trips taken on a direct-
service model are designed so users can complete their trip using a single line. Routes in a direct-service 
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network are predominantly designed in isolation of each other. Commuter trips are best served under 
this network model, providing efficient peak hour service to the CBD and sometimes other employ-
ment centers (Brown & Thompson, 2008). Little or no transferring is required, which is a common 
motivation for adopting this network structure due to the common perception that transfers are disliked 
by passengers (Brown & Thompson, 2008). A central issue with this service model, is that some users 
need to access destinations outside of the CBD, but using direct-service transit systems make this only 
possible with indirect travel through the CBD (Thompson & Matoff, 2003). Furthermore, people need 
and want to travel at times outside of weekday peak hours. 

	 Transfer-based networks are designed to allow riders to access multiple destinations when trans-
fers are utilized. Common direct-service networks take on either a hybrid structure, which consists of a 
central grid network with radial routes serving suburban areas (see Daganzo, 2010), or a grid structure. 
Transfer-based networks are increasingly adopted with knowledge that destinations are increasingly dis-
persed in metropolitan areas (Brown & Thompson, 2008), and in some settings this network model has 
been found to better satisfy dispersed mobility patterns (Badia et al., 2016; Daganzo, 1987; Thompson, 
1977; Vuchic, 2005). Transit networks with many transfer opportunities offer passengers a significantly 
greater selection of travel paths compared to direct-service networks comprised of a large number of 
integrated lines that involve little or no transfers (Vuchic, 2005). For example, the centralized radial 
bus network in Tallahassee, Florida was converted to a decentralized, grid-like network to better serve 
Tallahassee’s decentralized development patterns (Bhattacharya, Brown, Jaroszynski, & Batuhan, 2014). 
Transferring, however, can interrupt travel and cause significant travel time delays when timed poorly. 
With careful planning, such as good station design, convenient and safe walking paths, and frequent 
service across all routes, the inconvenience associated with transferring is minimized and benefits associ-
ated with transferring can be realized. 

Barcelona, Spain, in 2012 transitioned from a direct-service network to a transfer-based network, 
based on the proposed network design by Estrada, Roca-Riu, Badia, Robusté, and Daganzo (2011). The 
network design followed these three properties: full area coverage with transfers and non-circuitous rout-
ings, easy to understand network design (i.e., grid), and high frequency (average headway of 6.2 min-
utes) (Badia, Argote-Cabanero, & Daganzo, 2017). Preliminary analyses of this network transformation 
found that demand is already rising, and this growth is supported by transfers, suggesting that users are 
not averse to transferring when using a well-connected, high-frequency network (ibid). Complimenting 
these findings, Allen, Muñoz, and Rosell (2019), analyzed user satisfaction levels over a three year period 
following the implementation of the transfer-based network, to better understand how users’ perceive 
the network reform. The authors observed higher satisfaction levels among the new lines relative to the 
existing service, due to increased frequency and improved reliability, but also for the added access to 
opportunities provided by the new network. Furthermore, it was observed that transferring does not 
penalize user satisfaction, suggesting that the improved mobility offered by transfer-based networks can 
more effectively produce satisfied customers, despite the additional transfers occurred when travelling. 

3	 Study area

Réseau de transport de Longueuil (RTL) provides public transit services to the five suburban regions 
that comprise the Agglomération de Longueuil: Boucherville, Brossard, Saint-Bruno-de-Montarville, 
Longueuil, and Saint-Lambert. The service area is 309.6 km2 and serves a population of 427,050 resi-
dents and on average experiences 100,000 trips per weekday (RTL, 2017). Currently, 23% of residents 
in Longueuil commute to work by public transit (Statistics Canada, 2016). 

Longueuil is located on the south shore of Montreal, Quebec (see Figure 1), and a large portion of 
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residents commute daily to work in Montreal. The RTL network can be classified as a door-to-door bus 
network (or direct-service network), consisting of radial routes that follow circuitous routing for collec-
tion/distribution of riders in the low-density suburban residential areas and is designed to transport pas-
sengers to Montreal either via Terminus de Longueuil, which is a subway station operated by the Société 
de transport de Montréal (STM) or directly to Terminus Centre-Ville in downtown Montreal via the 
Champlain Bridge, see Figure 2. Median all-day route headways, as shown in Figure 2, are varied across 
the network and are typically large due to the extensive network coverage and length of the network 
(790 km) (RTL, 2019). 

 

Figure 1. Context map of Montreal Metropolitan Region

In the Montreal Metropolitan region, the Réseau express métropolitain (REM) light-rail project is 
currently under construction. The REM will have implications for existing network design across the 
Montreal region. In the case of Longueuil, the REM will connect Longueuil to the Island of Montreal 
through Terminus Panama (Figure 2), and this service is projected to be operational in 2022. Currently, 
a large number of routes travel directly to Montreal via the Champlain Bridge, and this service will be 
replaced by the REM. To ensure a seamless transition of passengers to the REM, we are proposing an 
express bus service to connect passengers at Terminus Panama to downtown Montreal, which will be 
cancelled when the REM is operational. 
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Figure 2. Existing door-to-door bus network, showing existing median all day route headways (minutes)

A challenge presented by this case study is the irregularity of Longueuil’s street network. There is 
little pattern or order to streets in Longueuil. The most intuitive method of designing a transfer-based 
network is to follow a grid pattern, so that the network is easy to understand (Badia et al., 2017) and 
minimizes redundancies of service. That said, it is still very plausible to develop a transfer-based network 
in a city with an irregular street network, and in fact a grid-like network of north-south and east-west 
interconnected routes can still be developed. 

4	 Methodology, application, and results

The objective of this study is to develop a comprehensive methodology for transport engineers and plan-
ners to follow when conducting a bus network redesign. The specific goal of this network redesign is to 
transition an existing door-to-door bus network to a high-frequency transfer-based network. We outline 
below in detail the main steps deriving our proposed methodology for creating a new network and out-
line how this proposed network can be evaluated against the existing bus service. The approach taken is 
to devise a new network from scratch, rather than modifying the existing network, with the goal of iden-
tifying new patterns for service according to travel demand and land-use characteristics, while preserving 
strong features in the existing network. The authors recognize that there are several other approaches 
that could be taken when conducting a network redesign, including complex computational approaches 
to determining optimal network designs and optimization approaches that aim for minimal network 
change. Such a computational approach was found to be quite rare among cities that recently conducted 
a bus network redesign in Canada and the United States (National Academies of Sciences, 2019), in 
fact no cities used a pure computational approach among the surveyed cities. Several examples of transit 
network optimization approaches to network redesign do exist, for example the work of Badia, Estrada, 
and Robusté (2014) which was later implemented in Barcelona, Spain (Badia et al., 2017), and Lleida, 
Spain (Trapote-Barreira, Robusté, Badia-Rodríguez, & Estrada-Romeu, 2016). Alternatively, Kalantari, 
Zamanian, and Amiripour (2014) presented a modification approach, whereby the authors proposed 
changes that optimize the performance of the existing network, and argue that this method is more ac-
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ceptable to riders and more likely to result in actual implementation when network changes are minor 
relative to a network designed with a blank slate. The method presented in this paper is designed to be 
implementable by both employees within transit agencies and consultants working with these agencies. 

First, we develop a prioritization index using a Geographic Information System (GIS) grid-cell 
model to identify priority corridors for bus routes according to existing land-use characteristics, regional 
travel demand, and existing network performance. Second, we propose high and medium-priority bus 
routes, which is guided by the prioritization index. Third, we evaluate the coverage of the proposed 
network and measure changes in accessibility to jobs. According to these network evaluations, modi-
fications to the proposed network were made. This process is completed iteratively, until we arrive at a 
new network that meets our two conditions: (i) offers sufficient network coverage to residents, and (ii) 
increase accessibility to jobs within 60 minutes by a minimum of 10 percent for all residents within the 
RTL service area. We complete our analysis by measuring whether the proposed service levels assumed 
in the accessibility analysis can be supported by the existing fleet. The existing fleet serves as a constraint 
in our analysis, whereby we are ensuring that the proposed network does not require the purchase of 
additional buses to deliver service.

5	 Prioritization index for new bus corridors

To identify priority bus corridors, we consider a range of indicators that capture demand for travel in 
the Longueuil region and existing network performance and utilization. Specifically, seven indicators are 
considered in this analysis, which are described in detail below, and are each standardized and combined 
to a grid in GIS. This GIS-based grid cell prioritization model has been demonstrated in other applica-
tions, such as bicycle facility planning in Quebec City and Montreal, Canada (Grisé & El-Geneidy, 
2018; Larsen, Patterson, & El-Geneidy, 2013). The seven indicators comprising this priority index were 
selected to capture existing and potential public transit demand and to help visualize optimal corridors. 

5.1	 Land-use characteristics

The first two indicators are employment and population density. Using data obtained from the Statistics 
Canada 2016 Census, employment and population density were calculated at the census tract level. 
These indicators ensure that proposed bus corridors are operating with high frequency in areas with high 
proportions of residents and jobs. 

5.2	 Regional travel demand

We then evaluated travel behavior in the region, using origin-destination (OD) survey data collected 
by the L’Autorité régionale de transport métropolitain (ARTM) in 2013 (Agence Métropolitaine de 
Transport, 2013). This data was used to generate desire lines, which represent demand for travel on 
each street segment. The OD survey collected by the ARTM surveys approximately 5% of the Montreal 
Metropolitan region and asks sampled participants over the phone to recall all trips made by themselves 
and other members of their household during the previous day. An expansion factor was applied to 
realistically capture the actual number of trips occurring in the region. Two indicators were generated, 
first an indicator representing all home-based trips for the purpose of work or school, and second all 
home-based trips by public transit. 
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5.3	 Existing network performance

The next three indicators we incorporated in our prioritization index were from automatic vehicle loca-
tion (AVL) and automatic passenger counter (APC) data to assess existing network performance and 
demand. The three indicators include passenger activity, passenger load, and speed. AVL/APC data were 
provided by the RTL and included approximately two weeks of trip data in 2016 (December 5–18) and 
2017 (September 4–17). We started by cleaning the data, to ensure that all records in our dataset were 
from trips operated by buses equipped with APC units, and we also removed incomplete trips from 
our sample. Our final sample consisted of weekday peak hour trips (6–9 AM and 4–6 PM) void of any 
holidays.

Passenger activity was calculated as the average number of boardings and alightings (ons and offs) 
occurring at each bus stop in the RTL network. In the case of a stop which serves multiple routes, pas-
senger activity was calculated as the average number of boardings and alightings observed from all routes 
serving that stop (in both directions). This indicator was used to capture frequently used stops in the 
existing network to assign high priority to these locations for the future network.

Route passenger load was calculated using the maximum load field within the AVL/APC data, 
which indicates the highest load observed during a trip. Passenger load is the total number of onboard 
passengers at the time of departure from each stop and is used in this analysis to identify heavily used 
bus corridors. Load was calculated for each route in the network by obtaining the average maximum 
load of all trips in our data sample.

Our final network performance indicator is stop-level speed. Speed was calculated using travel time 
obtained from AVL/APC data, and distance travelled was obtained using GIS. A network of routes was 
generated in GIS by using the sequence of stops as recorded by AVL/APC data and stop coordinates 
provided by General Transit Feed Specification (GTFS). The stop coordinates were plotted in GIS and 
a network of routes was generated in Network Analyst1. Network distance between subsequent stops 
along each route was then obtained, and speeds then calculated using the average travel time between 
subsequent stops from the AVL/APC. Speed was incorporated in the prioritization index to identify low 
performance routes in terms of segment-level speed. The objective is to identify low performing routes 
where investments in priority bus corridors are needed, such as exclusive bus lanes, signal priority for 
buses or off-board payment methods to reduce dwell time associated with boarding passengers or adjust-
ing stop locations (i.e., near-side versus far-side). 

5.4	 Combining and spatially aggregating indicators to a grid

Next, we aggregated the seven indicators to a grid cell with a 200m resolution. For example, we spatially 
joined the passenger load indicator to the grid cells, to determine the average passenger load of routes 
intersecting each grid cell. Grid cells with high passenger load indicates areas where existing service is 
highly used and should be a priority for frequent bus service in the future network. In the case of the 
public transit commuting trips indicator, we measured the number of trips passing through each grid 
cell. Following the spatial aggregation of each indicator to the grid cell, we standardized each indicator 
(calculated a Z-score) to then add each indicator to the prioritization index. The seven standardized 
indicators are shown in Figure 3. 

To combine all indicators into one priority index, we added each standardized indicator as follows: 

1 We first snapped stop to streets, and then these stops were loaded into Network Analyst and grouped according to a route 
ID (route number and direction fields concatenated) and drawn according to their relative sequence along the route. 
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Prioritzation index
	 =Population density+ Job density + Passenger activity 
	 +Passenger load + Flows all trips 
	 + Flows public transport trips – Speed

	  

 

Figure 3. Standardized result of each indicator

Average speed is inversely added to our prioritization index as the goal of this analysis is to identify 
optimal corridors for high-frequency public transport services, whereby investments are made to im-
prove the quality of service and reduce travel times. Note, we aggregated the seven indicators equally, 
and future applications of this method can consider applying a weighting scheme to prioritize certain 
indicators. The final prioritization index is presented in Figure 4. 

 

Figure 4. Final priority index
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6	 Proposed high and medium-priority bus routes

Through close examination of the prioritization index (Figure 4), we identified several priority bus cor-
ridors that followed priority grid cells (red colored). Proposed routes will predominantly terminate at 
either Terminus Panama (future stop of the REM light rail service) or Terminus de Longueuil (subway 
station connecting riders to the Island of Montreal). At Terminus Panama passengers will transfer to 
an express downtown service to Terminus Centre-ville in downtown Montreal, which will be replaced 
by the REM service when it is completed. An average waiting time of 90 seconds is recommended for 
this route to minimize any inconvenience associated with transferring at this terminal. When drawing 
routes, we aimed to propose routes that follow major arterials and will flow in either a north-south or 
east-west direction to generate a grid. Also, when proposing routes along parallel corridors, whenever 
possible we attempted to place routes approximately 800 meters apart, so the maximum walking dis-
tance (laterally) is approximately 400 meters or 5 minutes. While shorter walking access is desirable, due 
to the importance of frequency for passenger attraction (Vuchic, 2005), we maximized frequency at the 
expense of access in some cases.

Our recommended high-priority routes, shown in pink in Figure 5, comprise the high-frequency 
routes forming the backbone of our network. These are predominantly radial routes, converging at 
either Terminus Longueuil or Panama. Our high-priority routes covered as many priority grid cells as 
possible, however there are various barriers in the network that made this impossible, such as highways 
and railyards. These barriers also act as a hindrance from proposing a grid bus network. For example, 
there are limited locations for buses to travel east-west across the region, as many streets terminate on 
either side of the major north-south highway in Longueuil. 

Next, we proposed medium-frequency bus routes (green routes shown in Figure 5) to integrate 
with the high-frequency routes and provide adequate coverage across the study region. When drawing 
these routes, we covered as many remaining high and medium-priority grid cells as possible, while also 
trying to optimize the location of parallel routes. Some of these medium-priority routes do not converge 
downtown and help comprise the grid transit network that we are aiming for, thereby allowing for more 
diverse travel patterns to be possible. Many of the proposed routes in the new network followed exist-
ing route alignments to utilize existing stops in the future, although in most cases we simplified routes, 
eliminating circuitous routing on local streets, to reduce travel time. 
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Figure 5. Proposed high- and medium-priority bus routes

7	 Coverage analysis

To evaluate our proposed network, we first conducted a coverage analysis to identify network gaps that 
require improvements. This was done iteratively until a satisfactory level of coverage in the region was 
achieved, therefore meeting our first condition of a satisfactory network: ‘Offers sufficient network cov-
erage to residents’. To do so, we first measured the coverage of the existing network using 400m network 
buffers and then generated 600m buffers around stops of the proposed bus network. A network buffer 
of 400m is the most common standard measure of walking distance to bus stops (Gutiérrez & García-
Palomares, 2008; Hsiao, Lu, Sterling, & Weatherford, 1997; Kimpel, Dueker, & El-Geneidy, 2007; 
O'Neill, Ramsey, & Chou, 1992; Zhao, Chow, Li, Ubaka, & Gan, 2003), although more recently 
studies have examined this buffer and found varying walking distances according to service type and 
frequency (El-Geneidy, Grimsrud, Wasfi, Tétreault, & Surprenant-Legault, 2014). We adopted a 600m 
buffer for the proposed network as this is a high frequency network, and analyses of travel behavior have 
found that people walk further distances to routes with shorter waiting times (El-Geneidy et al., 2014).

Next, we compared the levels of coverage offered by the existing network and proposed network 
and applied modifications to the proposed network when major gaps were observed. As shown in Figure 
6, we see minor losses of coverage within Longueuil. This sub-optimal spatial coverage was similarly 
observed in the case of Barcelona, due to a lack of suitability among select streets for operating high-
frequency bus service (Estrada et al., 2011). Following close examination of these gaps in coverage, we 
determined that these were in suburban neighborhoods, with a striking lack of street connectivity and 
high proportion of cul-de-sacs. Due to the poor walkability of these neighborhoods, residents must walk 
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further distances to access bus service on nearby arterials. To mitigate this, we suggest for planners to 
consider alternatives to connect theses residents to bus service, such as improved pedestrian connectiv-
ity to arterial streets or various services to help complete the first mile/last mile (e.g., transport network 
company (TNC) partnerships or on-demand bus service). Interestingly, there are also areas in the city 
where the proposed network offers more coverage than the existing one. What is most important to em-
phasize is the level of coverage achieved by the proposed network with the reduced kilometers of service 
proposed (790 km of existing service compared to 420 km of proposed service). 

 

Figure 6. Comparing service coverage between the existing and proposed bus network

8	 Accessibility analysis

The ultimate goal of this bus redesign is to provide existing users and potential users with improved 
access to desired opportunities locally and within the Montreal Metropolitan region. Accessibility is 
defined as a measure of potential opportunities (Hansen, 1959). The potential for reaching potential op-
portunities is determined by both the transport system (reflecting the travel time for reaching a destina-
tion) and the land-use system (Handy & Niemeier, 1997). While reducing travel times is an important 
factor influencing passenger satisfaction levels (Dell’Olio, Ibeas, & Cecin, 2011; Mouwen, 2015; Susilo 
& Cats, 2014), accessibility was selected as the focus of our network evaluation as it is essential that 
transport systems provides individuals with access to spatially and temporally dispersed opportunities 
(Banister, 2008; Straatemeier, 2008).

In this analysis, we measured accessibility to jobs, which is a commonly used proxy for density 
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of activity in a region. A cumulative opportunity measure of accessibility of the existing and proposed 
network was calculated using Conveyal, an open-source cloud-based software.2 Jobs data was obtained 
from Statistics Canada 2016 Census Flow tables for the Montreal Metropolitan region, which repre-
sents the number commuters travelling between census tract (CT) pairs by mode of transport. Number 
of jobs is represented as the total number of commuters arriving per CT. Conveyal software measures 
accessibility at the grid cell level, with a resolution of 216 m by 216 m or approximately 0.05 km2, so 
number of jobs per CT was disaggregated by areal proportion into the grid cells intersecting each CT. 

Travel time by public transit between all grid cells was determined using a 60-minute threshold, 
which was selected based on the existing travel behavior of residents. According to OD survey data, the 
median travel time of residents commuting by public transit is 55.9 minutes and the 75th percentile 
travel time is 65.5 minutes. The resulting accessibility measures are presented in Figure 7. Travel time 
information for the existing network was obtained using GTFS data, and travel time was calculated 
for a generic Tuesday in May 2016. For the proposed network, GTFS data was drawn manually using 
Conveyal software’s web-based interface3 using a route speed of 31 km/h, which is the median route 
speed of all scheduled daily trips in the GTFS feed of the existing network. Exceptions were made for 
routes that operate predominantly on highways with bus priority. The express route between downtown 
and Terminus Panama was assigned a speed of 35 km/h, and the remaining two express routes were 
assigned a speed of 45 km/h; both speeds closely resemble those of existing service on these corridors. 
When drawing routes, default stops were generated automatically at 500-meter increments, with sub-
sequent manual adjustments to create convenient transfer points between routes and represent limited-
stop express service. Finally, we assigned a headway to each route to generate timetables for all routes 
in our network. High priority routes were assigned an all-day headway of 7 minutes, medium priority 
routes were scheduled as a 10-minute headway throughout the day, and the express route to downtown 
was assigned a headway of 3 minutes. In the absence of a detailed proposed timeline for this network, 
Conveyal allows users to specify planned frequency of routes. While uncertainty in travel time will result 
in the absence of detailed timetables, this uncertainty can be visualized in the software. Uncertainty in 
travel time will be more significant for networks with less frequent service, and minimized when service 
across the network is frequent, such as the proposed network. 

After calculating accessibility for each grid cell origin given the proposed and baseline networks, 
the two networks could be compared visually, highlighting remaining accessibility gaps to be addressed 
in additional iterations of network design. Several network iterations were carried out, where minor 
modifications to the proposed lines were made or new routes were added, until we reached a network 
satisfying our second condition: increase accessibility to jobs within 60 minutes by a minimum of 10 
percent for all residents within the RTL service area. 

Looking first at accessibility to jobs of the existing network, there are two hotspots of high acces-
sibility, which are the two major transport terminals in Longueuil: Terminus Longueuil (subway station) 
and Terminus Panama (major bus terminal). In the remainder of the region, moderate and low levels of 
accessibility are seen. Looking at accessibility levels of the proposed network, we see that the proportion 
of grid cells with moderate and high levels of accessibility is strikingly higher, meaning that a much larger 
number of residents are residing in an area with good levels of accessibility to jobs relative to the existing 
network. We also see that levels of higher accessibility for the most part follow the proposed network, 
and therefore all residents living around the new network will experience good levels of accessibility. 

2 Source code available at https://github.com/conveyal/analysis-backend
3 Note, GTFS data of surrounding municipalities was used in this analysis, and existing RTL schedules were replaced with 
schedules of proposed network 

https://github.com/conveyal/analysis-backend
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Looking closely at percentage change in accessibility (Figure 8) we see many areas of the region 
where significant gains in accessibility are experienced. There are also areas that experience declines in 
accessibility, which can be attributed to increased walking access to bus service in low density areas (iden-
tified in Figure 6). Also, moderate reductions in accessibility in the region of Brossard may be a result 
of the transfer required at Terminus Panama to the downtown-express bus service, whereas currently 
passengers can take a bus directly to the Island of Montreal. 

 

Figure 7. 60-minute accessibility to jobs (A) existing RTL bus network and (B) proposed bus network
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At a regional level, median accessibility to jobs within 60 minutes increases from 358,271 to 
475,064. This increase in job accessibility (approximately 33 percent) far exceeds our condition for an 
increase in accessibility of at least 10 percent. If the RTL were to instate a policy target that 75% of the 
service area’s residents should be able to access at least 10% of the Montreal Metropolitan region’s 1.75 
million jobs, the redesign scenario would meet it: approximately 78% of the population has access to at 
least 175,000 jobs in the redesign scenario, versus only 68% in the baseline.

 

Figure 8. Percent change in accessibility to jobs

9	 Bus fleet analysis

Following the proposal of a new bus network, we conducted a series of calculations to determine the 
number of buses required to operate the proposed network at peak service hours. This step was com-
pleted to ensure that the proposed network can be delivered using either the existing number of buses 
within the RTL fleet or with fewer buses to save operating costs. Currently, the RTL owns 484 buses, 
and we assumed that at any time a minimum of 10% of this fleet will be reserved for maintenance in 
the garage, leaving a maximum of 435 buses available to serve the network at peak. 

We first calculated the cycle time for each route, which is the time for one vehicle to complete both 
directions of a route (out and return). Cycle time is expressed by the relationship:

Cycle Time (minutes)=Travel Time (minutes)+Layover (minutes)

Cycle Time (minutes)= 2*Length (km)*60(min
hr )

Speed (km/h)
 + LayoverTime 
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In our calculations, we applied 40 minutes of layover (terminal) time, assuming a 10-minute break 
at one end and 30 at the other end. Finally, the number of vehicles required for each route is calculated 
as follows: 

Number of Vehicles⁴ = 
Cycle time (minutes)

Headway (minutes)

Using these formulas, we calculated the total number of buses required to operate the proposed 
network. Table 1 presents a scenario analysis, where we show total buses needed according to two levels 
of frequency, first a conservative scenario and a high-frequency scenario. We then show how operating 
speed changes the number of buses needed to serve each route. We begin with a speed of 31 km/h as 
used in our accessibility analysis, and then present more conservative operating speeds: 28, 25 and 22 
km/h. Note, a constant speed of 35 km/h for our express downtown route and 45 km/h for the two 
remaining express routes were used.

Table 1. Bus fleet calculation

Conservative frequency Operating speed

Headway 31 km/h 28 km/h 25 km/h 22 km/h

Express downtown 3 min 27 27 27 27

High priority routes 7 min 176 186 199 216

Medium priority routes 10 min 127 133 142 150

Total buses needed: 330 346 368 393

                            High frequency Operating speed

Headway 31 km/h 28 km/h 25 km/h 22 km/h

Express downtown 2 min 40 40 40

40

High priority routes 6 min 198 211 224 246

Medium priority routes 9 min 148 155 164 176

Total buses needed: 386 406 428 462

Under the conservative frequency scenario, we see that 330 buses are needed to serve the network 
assuming an average operating speed of 31 km/h, and as many as 393 buses are needed for network 
speeds averaging 22 km/h. Therefore, the conservative frequency scenario can be implemented with 
significant operational savings. Alternatively, the RTL can implement the high-frequency scenario, re-
quiring 386 buses if average operating speeds are 31 km/h, or 406 buses for network speeds averaging 
28 km/h or 428 for speeds averaging 25 km/h. However, there would be an insufficient number of buses 
to serve the network if average operating speeds are as low as 22 km/h. This sensitivity analysis demon-
strates that the proposed network is feasible from an operational standpoint or this network can save the 
agency operational costs which can be reinvested towards service quality improvements. Furthermore, 
this sensitivity analysis identifies the significant operational savings that can be realized by increasing 
average operating speed of bus service.

4 Calculated number of vehicles is rounded up
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10	 Case study of individual travel time and accessibility changes

As a final analysis of our proposed network (see Figure 9), we randomly selected 30 individuals from the 
2013 OD survey (previously used to evaluate travel demand), and measured changes in travel time and 
accessibility to jobs for these individuals’ commuting trips. Trips from selected OD pairs all originated 
within the RTL service area and each trip destination was located within the Montreal Metropolitan 
region. Our sample consists of trips by either transit or driving for the purpose of commuting to work 
or school. We observed that if the proposed network is implemented, these individuals would experi-
ence an average 13.9-minute reduction in their travel time (for their work based trip), or a 36% travel 
time savings. These travel time reductions are quite significant and would likely have a positive effect 
on user satisfaction levels, as well as potentially attracting drivers to switch to public transit. Moreover, 
these individuals would benefit from an 83% increase in their accessibility to jobs relative to the existing 
network. This increase in accessibility can be attributed to both reduced travel time and the improved 
connections to varied destinations within the city due to the grid-like network. In future analyses, these 
travel time changes should be extended to the full sample of the OD survey.

 

Figure 9. Final proposed network

11	 Conclusion

For cities wishing to boost transit ridership and reduce single occupancy driving, it is essential to de-
liver quality transit service that is an attractive alternative to driving. Transport professionals have the 
knowledge that passengers desire frequent, reliable and fast transit service, and through comprehensive 
bus network redesigns public transit agencies can try and align service delivery with the expectations of 
existing and future customers. This study presents a methodology that can guide the process of tran-
sitioning a door-to-door bus network to a high-frequency transfer-based network. An overview of our 
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methodology is shown in Figure 10. Using Longueuil, Quebec as a case study, we developed a method 
in GIS that consolidates multiple widely available datasets that describe the travel demand in the region, 
land-use characteristics, and existing network performance. A prioritization index was generated using 
these data to visually guide the proposal of high and medium-frequency bus routes. 

In future applications of this methodology, inputs into the prioritization index can be changed 
according to data availability and a weighting scheme can be applied to place increased importance 
on certain indicators. Also, our study incorporated existing population and employment density and 
future applications of this methodology should consider future land-use changes, such as evaluating 
ongoing or proposed redevelopment in the city, and projected changes in travel demand as a result of 
shifting employment and residential density. For example, other approaches can apply 10- year projec-
tions of population and jobs to account for future demand as an indicator in the prioritization index. 
Furthermore, while we accounted for passenger loads and passenger demand in the prioritization index, 
our study should be followed by the generation of a demand model to estimate average hourly demand 
and to calculate the expected loads based on the new frequency. Based on the existing network demand 
(average all-day maximum route load is 11 passengers) we are not expecting imminent capacity issues 
in the new service. 

While the street network in Longueuil lacks a clear pattern, we attempted to create a grid network 
to facilitate easy and intuitive transfers to spatially dispersed destinations in the city. The high-frequency 
routes that comprises the backbone of the network are predominantly radial routes, connecting to ei-
ther Terminus Panama or Terminus Longueuil. Several medium priority routes do not travel to either 
terminal but instead help form the grid pattern, thereby connecting radial routes and enabling transfers.

Figure 10. Overview of proposed methodology

Following the initial proposal of high and medium-priority routes, we evaluated the coverage of the 
routes and accessibility to jobs and modified the network accordingly. Several networks were proposed 
during our study, each improving on the network coverage or accessibility levels observed from previous 
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network iterations. While minor losses in network coverage were observed throughout the region of 
Longueuil, in some parts of the city we achieved similar levels of coverage despite reducing the length 
of the network by approximately 47%. Maximizing accessibility to jobs throughout the region was the 
ultimate target when evaluating the proposed network, rather than a mobility indicator such as travel 
time, since accessibility has been described as more accurately emphasizing the needs of individuals 
(Banister, 2008). While we did not plan for travel time, but accessibility, we noticed an average of 13.9 
minutes of travel time savings, in other words travel time savings will come as a byproduct when plan-
ning for accessibility. At the regional level, median accessibility to jobs within one hour increases from 
358,271 in the baseline scenario to 475,064 in the revised network. It is important to note that although 
the proposed network provides similar regional coverage and higher accessibility levels relative to the 
existing network, it requires significantly fewer buses than the RTL currently use in their fleet offering 
significant operational savings.

Changes in accessibility to jobs can be used to champion the proposed network. Transit accessibil-
ity is an intuitive and easily communicative measure of transit performance and can be used to commu-
nicate the benefits of the new network and generate buy-in of the network redesign from both the public 
and city officials as network changes are politically challenging for public transit agencies to implement.

Further evaluations should be considered in future analyses, including equity impacts, number of 
transfers (i.e., system-wide average transfer rate), and comprehensive travel time impacts (i.e., average 
transit travel time by census tract/neighborhood). Moreover, we recommend that planners apply an eq-
uity lens in future applications of this method by focusing on accessibility and travel time improvements 
in the most socially disadvantaged neighborhoods. Proactively considering disadvantaged neighbor-
hoods throughout the planning process, through both public engagement and quantitative analyses like 
this proposed methodology, will have considerable benefit for these communities rather than evaluating 
how well a transport plan meets equity goals. 

This study is intended to be easily replicated in other contexts by planners and engineers wishing to 
undertake a bus network redesign. This research illustrates the operational advantages of implementing 
a high-frequency transfer-based network, namely the reduced number of buses required to serve this 
network design relative to a door-to-door network. It is anticipated that implementation of this network 
structure will have positive impacts on ridership and satisfaction levels, as observed by Badia et al. (2017) 
and Allen et al. (2019) in the case of Barcelona’s network reform. However, further research is needed 
to measure changes in ridership and satisfaction before and after comprehensive bus network redesigns, 
particularly in the North American context. 

The expected opening of a new light rail project in the region offered a unique opportunity to 
rethink the entire RTL bus network. While such an opportunity does not happen every year for all 
agencies around the world, with the global prevalence of new rail projects or competing forms of trans-
portation, this methodology can be of value to many practitioners who are similarly undergoing ma-
jor network reforms. Alternatively, as cities grow and evolve, so do transit systems, often resulting in 
network inefficiencies or redundancies. We recommend transit agencies to conduct a network reform 
exercise such as this to determine whether the existing service is optimal for the region or whether net-
work modifications should be proposed to improve service. A minimum average increase in accessibility 
of 10 percent is recommended as a measure to determine whether an agency should go forward with 
a network reform, thereby ensuring that such a network reform is a worthy investment. Furthermore, 
as network changes can be politically challenging to implement and can create significant concern and 
disruption from residents, it is critical that public transit agencies are presenting network changes that 
will result in notable benefits to everyone. Achieving substantial improvements in accessibility are ex-
pected to result in ridership gains (see previous work that has associated higher accessibility at transit 
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stops with higher ridership (Dill, Schlossberg, Ma, & Meyer, 2013)), as well as increases in transit mode 
share, as supported by several studies (Boisjoly & El-Geneidy, 2016; Cui & El-Geneidy, 2019; Owen 
& Levinson, 2015).
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