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Abstract:  The phenomenon whereby individuals self-select into their 
residential environment based on previously determined preferences for 
how to travel is known as residential self-selection (RSS). Numerous 
studies have investigated the influence of RSS on the estimated effect 
of the built environment on travel behavior. However, surprisingly few 
have actually quantified its effect in terms of partitioning the total influ-
ence of the built environment (BE) on travel behavior into a compo-
nent attributable to RSS and one attributable to the built environment 
itself. This paper reviews 10 analyses (found in seven studies) that have 
quantified the proportion of the total influence of the built environment 
that is due to the BE itself (which we call the BEP), using either pro-
pensity-score or sample-selection approaches to control for RSS. After 
first outlining the basics of each approach, we then explain the various 
methods used to compute the BEP, followed by a discussion of the em-
pirical results. The estimated BEPs vary widely, ranging from 34 percent 
to 98 percent. A number of reasons for these disparities are suggested, 
but there is considerable divergence in estimates even when many of 
these factors are held constant. Additional research is called for to better 
understand the circumstances under which the BEP is higher or lower.

Keywords: Residential self-selection, propensity score, sample selec-
tion, travel behavior

1	 Introduction

The influence of the built environment (BE) on travel behavior (TB) is of considerable interest to 
transportation policy and planning, particularly since it is the most obvious limiting factor on whether 
individuals even have opportunities to make certain decisions with respect to their behavior. Without 
tracks, there is no rail transportation; without roads, there is no driving; and increased incidence of 
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aesthetic walking paths leading to interesting destinations will surely encourage, if not lead to, more 
walking in an area. It remains an open question, however, how much the built environment itself brings 
about a certain kind of behavior versus how much one’s proclivities for a certain kind of behavior influ-
ence one’s choice of built environment. To the extent the latter is true, policies that attempt to induce 
more sustainable travel behavior by shaping the built environment could fall short of expectations if 
large numbers of people end up living in sustainable built environments (perhaps due to financial in-
centives or a sizable increase in the supply of such environments) without having the proclivity to travel 
more sustainably.

The phenomenon whereby individuals self-select into their residential environment based on previ-
ously determined preferences for how to travel is known as residential self-selection (RSS). In the past 
two decades, numerous studies have analyzed the influence of the built environment on travel behavior 
after controlling for self-selection. In the process, a variety of approaches have been employed: direct 
questioning, statistical controls, instrumental variables models, sample-selection models, propensity-
score models, joint discrete-choice models, structural-equations models, mutually-dependent discrete-
choice models, and longitudinal designs (Schwanen and Mokhtarian 2005; Chatman 2005; Cao, 
Mokhtarian, and Handy 2011; Stevens and Brown 2011). 

The operationalization of these approaches has been diverse. In particular, the majority of studies 
simply provide a qualitative indication that both the built environment and self-selection matter, or that 
one of the two factors appears to be more important than the other. Several studies (e.g., Joh, Mai Thi, 
and Boarnet 2012; Larco et al. 2012) have found that only the built environment is important, but none 
has found that only self-selection matters. A much smaller number of researchers has actually quantified 
the shares of the total apparent influence of the built environment that are respectively attributable to 
the true influence versus to attitudinal predispositions, and they have done so in different ways.

Most of the handful of studies that quantify the role of RSS have been conducted since the review 
performed by Cao et al. (2011). Accordingly, it is worthwhile to assemble and examine those studies 
(both newer and older) to see what can be learned from them collectively. In particular, we provide 
an analysis both of the methods used to quantify the role of self-selection and the empirical results 
obtained. To keep the scope manageable, we limit ourselves to the two approaches that (so far) have, 
in our judgment, most commonly quantified the role of residential self-selection: propensity-score and 
sample-selection models. We also limit the discussion to situations where the travel behavior outcome of 
interest is treated as continuous-valued (and ratio-scaled).

The remainder of this paper is organized as follows. In the next section, we give a brief overview of 
the two approaches for dealing with RSS, and the corresponding methods used to quantify its role. In 
the third section we review seven recent studies (involving 10 models) that quantify the relative influenc-
es of the built environment and residential self-selection on travel behavior. The final section discusses 
the range of outcomes exhibited by the studies reviewed, including likely reasons for the differences, and 
calls for additional research to further investigate those reasons.

2	 Brief overview of methodologies

In the following subsections, we first provide short descriptions of the propensity-score and sample-
selection approaches for dealing with RSS. The final subsection presents the methods found in the 
literature for computing the proportion of the total effect of the BE on TB that is due to the BE itself 
(which we will refer to as the “built environment proportion” or BEP) as opposed to the proportion due 
to RSS (namely 1–BEP) for the propensity-score and sample-selection approaches.
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2.1	 Propensity scores

At the heart of this approach is the estimation of a propensity score for each case, which in our context is 
the probability of living in an urban neighborhood (the treatment condition), obtained from a binary 
discrete choice model of residential location. The propensity scores can be used in three (non-mutually-
exclusive) ways.1 The first is Regression (PSR): they can be entered into the TB model as a control vari-
able, similar to entering attitudes in the statistical controls approach, but with the difference that the 
propensity score (a) can combine multiple attitudes (and other variables) into a single composite value, 
and (b) focuses on explaining the propensity to live in a given environment, not on explaining the TB 
outcome itself. The second is Matching (PSM): respective residential choice groups can be matched on 
their propensity score. For example, each urban resident can be matched to the “most similar” subur-
ban resident (i.e., the one with the closest propensity score) until members of either group cannot be 
sufficiently matched, at which point the remaining cases are discarded. Then, the difference in TB for 
each matched pair is averaged over all pairs, and compared to the difference in average TB for all urban 
residents (matched or unmatched) versus all suburban residents. The third is Stratification (PSS): indi-
viduals can be stratified into a number of bins defined by specific ranges of the propensity scores (based 
either on the value of the score, e.g., subdividing the range from 0 to 1 into four or five intervals of equal 
width, or on the sample sizes within each stratum, e.g., subdividing the sample into four or five groups 
of roughly equal size based on the propensity score). Then, within each bin, differences in TB between 
the treatment and control group members can be compared, and a size-weighted average of those differ-
ences can be compared to the difference in average TB for all urban residents (matched or unmatched) 
versus all suburban residents.

Propensity-score matching and stratification employ related ideas; the purpose of each is to mimic 
a quasi-random experiment. By pairing or grouping cases with similar propensity scores, we can assume 
that the propensity to live in a given type of environment is similar for each person in such a pair or 
stratum, and that the “assignment” to a particular type of environment is random, given that propensity. 
Because the propensity to live in the treatment (or control) environment is similar for both cases, but 
their actual choices are different, any difference between the two groups with respect to the outcome 
variable of interest (i.e., travel behavior) is putatively capturing the “true” difference and not a difference 
that arises because of self-selection into the treatment or control environment. Compared to match-
ing, stratification has the advantage that virtually the entire sample can be used, and the corresponding 
disadvantage that the propensities within a given stratum may be too disparate for the assumption of 
equivalence to hold. 

In application, it is common to go beyond merely grouping cases on the basis of similar propensity 
scores; the ultimate goal is to correct for the sources of self-selection, namely the fact that the control 
and treatment groups are not initially equivalent, or “balanced,” on the key covariates that influence the 
propensities to live in one type of location or another. Accordingly, some form of means comparison 
(such as paired samples t-tests or standard differences; D’Agostino 1998) is typically used on the covari-
ates of the propensity-score equation for propensity-score matching or stratification to test (a) whether 
selection is taking place before grouping on propensity and (b) whether selection has been controlled 
for after grouping.

For both matching and stratification, the “before” difference on covariates is simply the difference 
(as indicated by t-tests or standard differences) between the full set of individuals in the treatment con-
dition and the full set of individuals in the control condition with respect to the covariates of the pro-
pensity-score equation. For matching, the “after” difference is the difference between the set of matched 
treatment individuals and the set of matched control individuals with respect to the same covariates. A 

1 A fourth way, less often used and not further treated here, is to use the propensity score to weight cases according to the inverse 
probability of treatment. See Austin (2011) for a discussion of all four methods.
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typical rule of thumb in epidemiology is that if the standard difference for a covariate is less than 10 per-
cent, the treatment and control groups are considered balanced on that covariate (Oakes and Johnson 
2006). With respect to stratification, “after” differences may be analyzed by using a two-way analysis of 
variance (Rosenbaum and Rubin 1984), with two treatments by s strata and an F-statistic for the main 
effect of neighborhood type after adjusting for propensity score quantiles and an F-statistic for the in-
teraction effect between neighborhood type and propensity-score quantile, both with respect to each of 
the covariates. If after matching or stratification there is little or no significant difference between urban 
and suburban residents (in the same pair or stratum) on all covariates, then self-selection is considered 
to be controlled for. Of course, this will only be true to the extent that all relevant covariates have been 
measured and included, an important point to which we return later.

2.2	 Sample selection

Sample selection in this context refers to a model variously known as an endogenous switching regres-
sion, a “mover/stayer” or Roy model, or a two-outcome version of the standard “Heckit” model (Heck-
man 1979; Heckman, Tobias, and Vytlacil 2001). The standard sample selection approach requires that 
the selection equation be a binary probit model (which could have the same explanatory variables as the 
propensity score equation), and the outcome equation for travel behavior is allowed to vary by residen-
tial choice. Specifically, we have:

					                     	 (the selection equation);
			                    (the outcome equation under the treatment condition);
			                    (the outcome equation under the control condition);

where

 is the latent continuous utility or propensity that person i has for living in an urban neighborhood; 

RCi is the observed residential location choice, = 0 if person i lives in a suburban neighborhood (mean-
ing that   < 0) and = 1 if in an urban neighborhood 

α is the vector of selection equation coefficients, wi is a vector of observed covariate values, and ui is the 
net impact on  of unobserved characteristics for individual i;

Yi is the travel behavior outcome for person i; and

βRCi is the vector of outcome equation coefficients, xi is a vector of covariate values, and εiRCi is the net 
impact on Yi of unobserved characteristics, for individual i living in neighborhood type RCi. It is cus-
tomary to improve identifiability by including at least one variable in the selection equation that does 
not appear in the outcome equations (Winship and Morgan 1999; Cameron and Trivedi 2005).

The error terms of the three equations are assumed to be trivariate normally-distributed, as follows 
(Greene 2007, Section E32.3.1):

  

						      ,
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where σ1
2 and σ 0

2 are the variances of εi1 and εi0 , respectively, Var(ui) is normalized to 1 for identifi-
ability, ρ1 = Corr(εi1, ui) and ρ0 = Corr(εi0, ui). The zero covariance between the error terms of the two 
outcome equations reflects the fact that individuals are only measured in one of the two (treatment or 
control) states, not both, so if errors are uncorrelated across individuals (per the usual assumption for 
random samples), they will be uncorrelated between mutually exclusive groups of individuals.

The mover-stayer model is different from an ordinary market segmentation model in that: (1) the 
selection model is often (though not necessarily) estimated simultaneously with the outcome equations 
using full information maximum likelihood, and more importantly, (2) in estimation, each outcome 
equation incorporates a “selection correction” factor that involves the probabilities from the selection 
equation. This factor should ideally correct the selectivity bias (i.e., any non-zero mean) of the error term 
of the outcome equation, and under certain relatively general assumptions, in the case of a binary probit 
selection equation, the inverse Mills ratio (IMR) is the appropriate factor to do so (Winship and Morgan 
1999). The IMR is the ratio of the standard normal probability density function ϕ to the standard nor-
mal cumulative distribution function Φ, where the arguments of both functions are the observed utility 
of the selection equation (or its negative). The appropriate IMR differs for each outcome equation:

 
	       when RCi = 1 and 		  when RCi = 0. If these quantities are inserted into their 

respective outcome equations with coefficients ρ1σ1=λ1 and ρ0σ 0 =λ0  , respectively, ordinary least 
squares or maximum likelihood estimation of the resulting equations will provide consistent estimates 
of  and  , as well as λ1 and λ0 .

In the two-step estimation method, the selection model is estimated in the first step, the resulting      
is used to estimate the IMR terms, and the two outcome equations (containing the IMR

^ s) are esti-
mated in the second step. In this case (reflecting the increased uncertainty from using IMR

^
 rather than 

the true IMR), the asymptotic covariance matrix of the estimators of the coefficients of the outcome 
equations needs to be corrected to obtain consistency of the standard errors of the parameter estimates. 
The usual least squares estimate of the variance of the error term of each outcome equation needs to be 
corrected as well. In the case of (one-step) full-information maximum likelihood (FIML) estimation, 
consistent estimates are obtained without the need for correction.

A key difference between the PS and SS methods is that propensity scores do not correct for the bias 
resulting from correlation between unobservables of the propensity-score equation and unobservables 
of the travel-behavior equation, but only for correlation between observables of the propensity-score 
equation and unobservables of the travel-behavior equation (Winship and Morgan 1999, p. 679). By 
contrast, the sample selection approach not only allows the travel-behavior equations to differ by type 
of residential location, it also allows correlation between unobservables of the selection equation (analo-
gous to the propensity-score equation) and unobservables of the travel behavior equations (Winship 
and Morgan1999; Heckman, Tobias, and Vytlacil 2001; Cameron and Trivedi 2005, Section 16.5.7 
and Chapter 25). 

2.3	 Computing the Built Environment Proportion (BEP)

By construction the BEP is a fraction, which will ordinarily (but not necessarily) fall between zero and 
one, inclusive.2 The denominator constitutes the total effect of the built environment. It represents the 
BE effect on TB observed when RSS is not controlled for. The numerator constitutes the true effect of 
the BE on TB, representing the BE effect observed when RSS is controlled for. It is of interest to note 

2 Let us write BEP = 
BEeff

BEeff + ATeff  for simplicity, where the two constituents respectively represent the true effect of the built 
environment and the effect of attitudinal predispositions on travel behavior. In general, we would expect BEeff and ATeff to have
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that although the concept of the BEP seems to be a natural one (referred to, albeit not given a name, in 
Mokhtarian and Cao 2008), none of the travel behavior studies reviewed in this paper (all of which used 
it, though again without calling it as such) cited a precedent for it in the general treatment effects/sample 
selection literature, and the present authors could not find such a precedent.3 
In the following discussion, several concepts are of importance:

•	 The average treatment effect (ATE) is the expected difference in outcomes (after versus before 
treatment) across the whole population, i.e., the average change in TB if a randomly selected 
person moved from a suburban neighborhood to an urban one.4

•	 The average treatment effect on the treated (TT) is the expected outcome (TB) for those who 
receive the treatment (in our context, for those who now live in an urban location), relative to 
what the outcome would have been if they did not receive the treatment (i.e., if they were to 
live in a suburban location).

•	 The average treatment effect on the untreated (TUT) is the expected difference in outcomes 
for those who now live in a suburban location, if they were to move to an urban location.

In general, these effects are not necessarily equal (Heckman, Tobias, and Vytlacil 2001), and it is 
not always clear which one is of the greatest interest. For example, as Ho et al. (2007, p. 204) point 
out, “Medical studies typically use the [TT] as the designated quantity of interest because they often 
only care about the causal effect of drugs for patients that receive or would receive the drugs.” In our 
context, we could legitimately be interested in TT, as expressing the change in travel behavior that could 
be expected from specific new developments, for the residents of those developments. But if we wanted to 
project those results to a situation in which many such new developments were to be built, such that 

the same sign, even if an individual is attitudinally mismatched with respect to his or her residential location. For example, all 
else equal, we expect those who prefer to live in an urban environment to drive less than those who do not, and we also expect 
those who actually do live in an urban environment to drive less than those who do not. It can be seen that BEP will lie outside 
the interval [0, 1] if and only if ATeff is opposite in sign to BEeff, in which case BEP > 1 if ATeff is smaller in magnitude than 
BEeff, and BEP < 0 if the converse is true. Having opposite signs would signify an extreme case of residential mismatch (e.g., in 
which people living in an urban environment actually drive more than those in suburbia, despite wanting to drive less), which 
is unlikely to occur as an average outcome across a large group. However, if either BEeff or ATeff is near 0 in reality, its estimate 
may lie just on the “other side” of 0 (compared to the sign of the larger effect) through random variation, which could lead to 
an estimated BEP slightly outside [0, 1].
3 The evaluation literature includes a number of comparisons (e.g., Shadish, Clark, and Steiner 2008; Cook, Shadish, and Wong 
2008) of treatment effects (TE) estimated from randomized experiments (RE, considered the gold standard), TERE, with those 
estimated from observational studies (OS), TEOS – most rigorously using the same sample for both measurements. In such cases 
it is common to report bias reductions for various methods that control for selection bias. The absolute bias is computed as the 
absolute difference between the answer obtained from the randomized experiment and the one obtained from the observational 
study without controlling for selection bias (TEOSwo control), namely |TEOSwo control – TERE|. The answer obtained from the obser-
vational study with controls for selection bias (TEOSw control) is presumably closer to the truth (TERE) than is TEOSwo control, and so  
TEOSw control −TERE

TEOSwo control −TERE
 is generally a quantity less than 1, denoting the absolute bias remaining after controls, expressed as a fraction of 

the amount in place before controls. The quantity 1− TEOSw control −TERE

TEOSwo control −TERE

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟×100% is the bias reduction. The measure  

TEOSw control −TERE

TEOSwo control −TERE
 is 

not unlike our concept of the BEP, for which the denominator represents the “uncorrected” effect and the numerator the “cor-
rected” effect. In our case, however, a TERE is not available, and so our BEP corresponds to 

TEOSw control

TEOSwo control
 . Among other benefits, 

this literature is valuable in reminding us that TEOSw control is only closer to the truth (as estimated by TERE) than is TEOSwo control, 
not equal to it. In general, the controls for RSS are going to be imperfect, for any method. Of course, it is also important to 
remember that even TERE can only be estimated, not known perfectly.
4 Strictly speaking, there are two different averages involved (Cameron and Trivedi 2005). The average treatment effect (ATE) 
for a person with observed characteristics x, ATE(x), is an average over the distribution of unobserved characteristics. ATE, 
by contrast, is the average of ATE(x) over the distribution of x (observed characteristics). Technically, this might more clearly 
be labeled the average ATE(x), or AATE, but in keeping with convention, we will use “ATE” to refer to this double average.
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many people would end up living there without deliberately self-selecting into them, then we would 
expect the TB impacts for those people to look like TUT, and ATE could be a more appropriate indica-
tor of the overall effect.

To complicate matters further, the literature does not always clearly distinguish between ATE and 
TT (Oakes and Johnson 2006).5 In our context, we consider it appropriate to focus on ATE, since the 
effectiveness of land-use policy as a tool for reducing vehicle travel depends on its large-scale application. 
However, PSM methods typically focus on TT,6 whereas PSS and SS methods readily produce ATE as 
well as TT (and TUT) (Cameron and Trivedi 2005, pp. 872–875; Tucker 2010).

Accordingly, we can say that for both propensity-score and sample-selection models, the numera-
tor of the BEP is a treatment effect for which self-selection has been controlled, but in application that 
effect has been computed as ATE for PSS and SS methods, and generally as TT for PSM methods. The 
denominator is again computed differently for each method; it consists of a quantity called the observed 
influence (obs. inf.) for propensity-score methods, and has two different formulations (presented in Sec-
tion 2.3.2) in the sample-selection context.

Formally, ATE can be defined as E[ Yi1 −Yi0 ], where  Yi1  is the (TB) outcome for person i when 
treated (living in an urban neighborhood),  Yi0 is the outcome when i is untreated (living in a suburban 
neighborhood), and E is the expectation operator (after Winship and Morgan 1999). TT can be defined 
as E[Yi1 −Yi0 | i ∈ T  ], where T denotes the treatment group.

However, these conceptualizations inherently assume that we have information on all individuals 
for both the environment in which they actually do live and the environment in which they do not, but 
theoretically could, live.7 Since it is rarely the case that data is available for both, the challenge is to find 
a way to estimate ATE and TT that is not subject to a self-selection bias.

In the subsections below, we present the computation of the numerator and denominator of the 
BEP for the propensity-score and sample-selection approaches, respectively, as it has been operational-
ized in the literature to date.

2.3.1	 Propensity score methods

The simplest empirical measure of an effect is just the difference in means between the treatment and 
control groups:  Yi∈T −Yi∈C  , where T designates the treatment group and C the control group, Yi is 
the TB outcome for person i,  

Yi∈T =
Yi

i∈T
∑
NT

,  
Yi∈C =

Yi
i∈C
∑
NC

 , and NT and NC are the numbers of cases in T and 
C, respectively. 

But if self-selection is not controlled for, this measure confounds the true effect of being treated 
5 For example, D’Agostino 1998, p. 2266, refers loosely to “treatment effects” and “average treatment effect at that propensity 
score.” A key article by Becker and Ichino (2002) is titled “Estimation of average treatment effects…” but only discusses the 
average treatment effect on the treated. And Greene (2007 Section 32.2) occasionally uses “average treatment effect” as short-
hand for what the context ostensibly makes clear is actually “average treatment effect on the treated.” Other scholars, such as 
Cameron and Trivedi (2005), are careful to specify whether a given formula estimates TT or ATE.
6 Conceptually, this is natural, since (as ordinarily applied), the entire purpose of the matching approach is to provide a proxy 
measure of the counterfactual specifically for the treated cases.
7 In our opinion (experience), considerable confusion for the newcomer to this literature can arise from the failure to distinguish 
group membership from treatment condition, two dimensions that are conceptually (and therefore notationally) distinct but 
completely confounded in the typical observational study. It is important to understand that conceptually, in terms of group 
membership, the population is divided into two categories, here labeled “T” and “C,” separately from whether a given group 
member is actually treated or not. Similarly, in terms of treatment condition a person can live in either of two types of neighbor-
hood, RC = 1 (urban) and RC = 0 (suburban), regardless of which group membership label he or she bears. We only observe T 
members having RC = 1 and C members having RC = 0, but behind both the PS and the SS methods is the concept of the 
counterfactual, in which we imagine (and try to account for) what would happen if T members lived in suburbs (RC = 0) and/
or C members lived in urban areas.
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(moving from a suburban to an urban area) with effects that are due to self-selection. Thus, when self-
selection is not controlled for,Yi∈T −Yi∈C is the total observed influence of the BE, i.e., the denominator 
of the BEP. Various estimates of  Yi∈T −Yi∈C  when self-selection is controlled for constitute alternative 
ways of computing the numerator of the BEP, the treatment effect.

Specifically, for PSM, the treatment effect (in this case, usually TT) is the difference in means of the 
outcome behavior of interest between the matched treatment and control residents (D’Agostino 1998; 
Cameron and Trivedi 2005); since they are matched to have similar propensities to live in a given area, 
any remaining differences in TB are presumed to be true influences of the BE in which they actually live. 
On the other hand, the denominator of the BEP, i.e., the observed influence, is the difference in means 
of the unmatched treatment and control residents; when pooled without regard to propensity, observed 
differences in TB are a conflation of both true BE influences and influences of predispositions to live in 
a certain type of BE.

For PSS (Imbens 2004), the ATE and TT are each computed as (different) weighted averages of the 
differences in means of the outcome variable for the stratified groups. In both cases, within each stratum, 
separate averages are taken for the treatment and control cases, and the difference in the averages is calcu-
lated. Then those differences are averaged across strata: for the ATE, the differences are weighted by the 
share of individuals in the overall sample who fall within each stratum (without regard to treatment sta-
tus), and for the TT they are weighted by the share of the sample of treated individuals that falls within 
the stratum. The observed influence for PSS is the same as for PSM: the actual difference between the 
treatment and control groups, without matching or stratification.

Not all individuals will be living in their preferred environment. Consider the extreme case where 
individuals are all “consonant” (Schwanen and Mokhtarian 2005) with their preferences. In this case, 
the average TB difference between urban and suburban residents will tend to be the most pronounced. 
At the opposite extreme, where all individuals are “dissonant,” then the behavior of individuals will 
likely be much closer to one another, since each group may behave in part as it normally would based on 
preferences, but it would be affected by the environment in the opposite manner. For an experiment in 
which people could be randomly assigned to residential neighborhood type, the TB difference would lie 
somewhere between these two extremes (Cao 2010). However, the actual observed influence will likely 
not be the same as for a random experiment, due to some self-selection taking place. Through matching 
or stratification, the goal is to control for that difference between the observed influence and what it 
would be for a random experiment.

We were unable to find any studies in which a BEP was calculated for a propensity-score regression 
(PSR) model; for this paper we limit the discussion to methods that have been applied.

2.3.2 	 Sample selection model

For the sample selection model, authors often consider the ATE, estimated as (Heckman, Tobias, and 
Vytlacil 2001):  , where  and  are the vectors of estimated coeffi-
cients for the outcome models respectively associated with the treatment (urban) and control 
(suburban) conditions, and  is the vector of sample means of the ordinary explanatory variables (not 
including the IMR term defined in Section 2.2, although the IMR term is included when estimating the 
coefficients of the outcome equations, thereby allowing the βs to be consistently estimated). Note that this 
formulation requires both sets of covariates for the two outcome equations to be the same, so the super-
set of all variables significant to either equation is included in both outcome specifications. The ATE is 
the expected change in travel behavior when moving a randomly selected individual from a suburban to 
an urban environment. Even though we still do not observe an individual in both environments, the 
genius of this method is that, by controlling for RSS through the inclusion of the IMR term in each 

^
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outcome equation, the consistently estimated β1 and β0 coefficients properly reflect the expected influ-
ence that the x variables would have if an individual with such characteristics were placed in each of the 
associated environments. 

	 As mentioned, the ATE is the numerator for the BEP calculation: the true effect of the BE. For 
the denominator—the total effect of the BE—two quantities are of interest: the average treatment effect 
on the treated (TT), and the average treatment effect on the untreated (TUT). It can be shown that the 
treatment effect on the treated, for a treated person i with characteristics xi and wi , is 

					             , and the average treatment effect on the treated, TT, 

is estimated by replacing the unknown parameters in the above quantity with their estimated values, and 

averaging over the sample of treated persons (Heckman, Tobias, and Vytlacil 2001)8:
, where N1 is the number of cases for which RC = 1. 

	 The TT is the expected outcome gain from the treatment for individuals that select the treat-
ment option. In the case of residential choice, it represents the expected change in the travel behavior 
of individuals who have moved from a suburban to an urban residential location (i.e., who have been 
treated). Note that the TT for a given treated case i can be considered to represent the total effect of 
the BE for such cases, which can be decomposed into the component constituting the true effect of the  
BE ( , i.e., the ATE for such cases), and the component reflecting the influence of the pro-

pensity of the treated cases (urban dwellers) to live in an urban environment (  , 

i.e., the portion of the total effect that is due to self-selection). ρ1σ1  and ρ0σ 0  are the coefficients of 

the IMR terms in the RC = 1 and RC = 0 outcome equations, respectively, and  is the IMR for 

treatment for treated person i, call it IMRi1, with estimated counterpart  .

Similarly, the TUT for a given untreated case i, with characteristics xi and wi, can be written as:

					     and the average treatment effect on the untreated, TUT, 

is estimated by replacing the unknown parameters in the above quantity with their estimated values, 

and averaging over the sample of untreated persons:  , where 

N0 is the number of cases for which RC = 0. The latter represents the expected change in travel behavior 

of individuals who did not select the treatment option, if they were to be treated. In our context, for a given 

untreated case this represents the total effect of the BE for such cases, which can be decomposed into 

the component constituting the true effect of the BE , i.e., the ATE for such cases), and 

the component reflecting the influence of the propensity of the untreated cases (suburban dwellers) to 

live in an urban environment , i.e., the portion of the total effect that is due to 

self-selection).  is the IMR for treatment for untreated person i, call it IMRi0, with estimated 

counterpart 		   . 

At least two studies have used the TT as the denominator in a calculation of BEP (i.e., the BEP 

is calculated as ATE / TT) (Zhou and Kockelman 2008; Cao 2009). However, while also relaxing the 

assumption of jointly normally distributed error terms (and thus using counterparts to the IMRs that 

are different from the formulas presented here), Bhat and Eluru (2009) use a weighted average of the 

8 At the time of this writing, Limdep 10.0 estimates TT by evaluating the above expression at the overall sample means of x and 
w (personal communication of William Greene to the first author, Sept. 27, 2014), which differs from the approach described 
by Heckman, Tobias, and Vytlacil (2001) in (a) using a nonlinear function (the IMR) evaluated at the average rather than the 
average of the functional values (see, e.g., Train 2009, pp. 29-30, for the dangers of doing this in similar contexts), and (b) using 
the entire sample rather than only the treated cases to compute the quantity. It is unknown how different the two estimates are.

TT(xi ,wi) = (β1- β0)´xi +

TUT(xi ,wi) = (β1- β0)´xi +
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TT and TUT as their denominator—specifically, , where N0 and N1 are as defined 

above, and N = N0 + N1. As will be seen in the following section, this alternative formulation substan-

tially affects the empirical results.

	 The weighted average of the TT and TUT differs from, but is related to, ATE. In the standard 

mover-stayer model context (i.e., with jointly normal error terms), note that

That is, the weighted average can again be decomposed into a component constituting the true effect of 

the BE (the ATE), and a component constituting the average influence of the propensity to live in an 

urban environment (i.e., the portion of the total effect that is due to self-selection).

We speculate that the studies that use the TT as the denominator may have been considering Heck-

man’s original sample selection model, in which there is only one outcome (i.e., cases are either treated 

or not observed), instead of the endogenous switching model (for which all cases are observed, either as 

treated or untreated). In the endogenous switching context, it seems natural that it should not make any 

difference whether one environment or the other is labeled as the treatment or control—but using ATE/

TT yields different results when treatment and control labels are switched. The weighted average of TT 

and TUT has the further satisfying feature that its computation is based on the entire sample—making 

it a more appropriate counterpart to the ATE numerator, which by construction is computed over the 

entire sample— whereas in theory the TT measure (including its ATE component, as described above) 

is computed only over the treated observations.9

The reader may be confused by the fact that TT constitutes the numerator of the BEP for the PSM 

method (as applied so far) but the denominator of the BEP for SS (in two out of three applications re-

viewed here). To help clarify matters, we can point out that the quantity labeled “treatment effect on the 

treated” (and similarly for the untreated) has substantively different content in the two contexts. In the 

SS context, it is clear from the equations and accompanying discussion that TT includes both a “true” 

effect and a bias term representing the effect of self-selection, whereas in the PSM context, the matching 

process, occurring before TT is computed, is intended precisely to remove that bias, leaving the true 

effect (on the treated). Thus, in both instances the incorporation of TT is consistent with the concept 

of the BEP: in the denominator when (for SS) it reflects a “total” effect of the BE, and in the numerator 

when (for PSM) it reflects a “pure” effect. 

9 Although, as mentioned in the preceding footnote, Limdep 10.0 computes TT by using arguments that are averaged over 
the entire sample.
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3	 Review of studies that have quantified the true BE vs. RSS effect

As indicated in the introduction, only a relatively small number of studies have quantified the propor-
tion of the effect of the BE on TB that is due to the BE itself, i.e., the BEP. Table 1 summarizes ten 
models in seven studies we have identified that explicitly quantified a value between 0 percent and 100 
percent for the share of total BE effect due to each factor. In the remainder of this section, we briefly 
describe each study, together with the approach it used to quantify the BEP.

3.1	 Propensity scores

Xinyu (Jason) Cao and his co-authors have pioneered the application of the propensity score approach 
to the RSS context, so far producing four different studies involving this approach.

3.1.1 	 Cao (2010)

Taking data from 1553 responses to a self-administered Northern California survey distributed in 2003, 
Cao (2010) used stratification on the propensity score as a means of controlling for self-selection. Neigh-
borhood type (“traditional” and “suburban” residence) was used as the binary location variable for the 
propensity-score (logit) model with suburban residence as the refer¬ence category (i.e., for any analysis 
involving treatment effects, treatment = traditional, control = suburban). Neighborhoods were purpose-
ly chosen to vary systematically by neighborhood attributes, size of metropolitan area, and region in the 
state. Traditional neighborhoods were built mostly before World War II, and suburban ones were built 
more recently. A number of residential preferences and travel attitudes were available and incorporated 
into the propensity score equation. Residential preferences dealt with accessibility, physical activity op-
tions, safety, socializing, attractiveness, and outdoor spaciousness, while travel attitudes included being 
pro-walk/bike, pro-transit, pro-travel, travel-minimizing, car safety-conscious, and car dependent.

The study provides estimates of the BEP for two types of walking behaviors: strolling frequency 
(recreation) and walking-to-store frequency (transportation). The BEP was computed as the average 
treatment effect (ATE) divided by the observed influence (obs. inf.), where (see, e.g., Imbens 2004, p. 
18) the ATE is calculated by first finding the difference in travel behavior between traditional and sub-
urban residents within five strata of equal size (307–309 cases in each), and then taking the average of 
these differences, weighting each difference by the total number of individuals in the stratum for which 
the difference is calculated. To compare the differences before and after stratification, he used indepen-
dent sample t-tests with Levine’s test for inequality of variances, and F-statistics for main and interaction 
effects after stratification. The study found that after self-selection had been controlled, the influence of 
the BE that remained was 86 percent and 61 percent of the total for strolling frequency and walking-to-
store frequency, respectively.
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3.1.2 	 Cao, Xu, and Fan (2010)

Cao, Xu, and Fan (2010) used propensity score matching with multiple treatments to control for RSS 
with respect to vehicle-miles driven (VMD). The data comprised 3376 households completing a re-
gional travel diary in the Research Triangle metropolitan area of North Carolina—the Greater Triangle 
Travel Study conducted in 2006. Variables available included socioeconomic traits, residential prefer-
ences with respect to length of commute, access to transit, access to a desirable school, neighborhood 
safety, and neighborhood amenities. 

The study considers six pairs of “treatment” and “control” neighborhood types—inner-ring suburb 
and urban, suburb and urban, suburb and inner-ring suburb, exurb and urban, exurb and inner-ring 
suburb, and exurb and suburb—with binary logit propensity-score models estimated for each pair. 
These were classified based on the network distance between households’ residence and the city center 
point. In contrast to many other self-selection studies (but similar to Bhat and Eluru 2009), this as-
signment was determined after the survey through analytical methods, as opposed to neighborhoods 
purposefully being selected to fit those classifications before the survey was administered. It is interest-
ing to note (as presented below) that the range of BEPs found in the Cao, Xu, and Fan (2010) study is 
quite wide relative to other studies. However, this may represent a more realistic approach to assessing 
BE effects across the full spectrum of geographic diversity, rather than confining the analysis to contrasts 
between “traditional” and “suburban” neighborhoods, which have been selected precisely to exemplify 
stereotypes. Specifically, entire regions are not “stereotypically suburban” and capable of being turned 
into “stereotypically traditional.” In contrast, the approach of Cao, Xu, and Fan (2010) could be useful 
for showing what could be expected if an “inner-ring suburb” became “urban,” or if a “suburb” became 
an “inner-ring suburb,” which would be much more realistic (even if applied to only the relevant subset 
of a region) than projecting more dramatic built environment changes across an entire region.10

For the matching itself, a treatment individual was randomly selected and the control case with 
the closest propensity score was matched to that individual. They used one-to-one without replacement 
(meaning that once a control case was matched to a treatment case, it was removed and not available for 
further matching), and a caliper width of 0.01 (if a control case could not be found having a propensity 
score within 0.01 of the treatment case’s score, then the treatment case was not matched).

To test whether self-selection was controlled for, they used the standard difference (D’Agostino 
1998):  , where  is the sample mean of a continuous covariate of the

propensity-score equation for urban residents,  is the sample mean for suburban residents,  
is the sample variance for urban residents, and  is the sample variance for suburban residents (for 
discrete covariates, the expression is conceptually the same but operationalized slightly differently; see, 

10 We note in passing that this point illustrates the complexity of our application of classic program effectiveness evaluation 
approaches. In many such applications there are two crisp conditions, treatment and control, and the designation/identifica-
tion of cases as one or the other is relatively unambiguous (albeit with some potential for contamination and crossover). In our 
context there are several complications, in that “treatment” (1) could be considered a spatial continuum (e.g., as approximated 
by population density); (2) is actually multivariate (based not just on density, but also on diverse land uses, availability of transit, 
walk/bicycle-friendliness, and so on), with the particular set of relevant variables being not at all well-defined and consistently 
agreed-upon (Cao 2009); (3) could reasonably apply not just to the residential location, but to work and potentially to other 
frequently visited locations as well; and (4) could be episodically applied and “unapplied” as individuals move to different types 
of locations over a lifetime. Furthermore, (5) as seen in Table 1 and throughout Section 3, there is not even unanimity in the 
literature on which condition constitutes the “treatment” and which the “control.” For these reasons, the classification of cases as 
treatment or control is actually rather muddy, although most studies in this context simplify the analysis by (1) discretizing the 
continuum, (2) selecting locations so as to exemplify the two contrasting types of neighborhoods, and (3) classifying cases only 
on the basis of their residential location at a single point in time.
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e.g., Austin 2011, p. 412). This equation is applied before and after propensity matching to see whether 
residential self-selection is taking place (before) and whether it has been controlled for (after). That is, it 
is applied to see whether the covariates are “balanced” between treatment and control groups. The BEP 
is calculated as the treatment effect (TE)11 divided by the observed influence, where the TE is the differ-
ence in mean VMD between the matched treatment and control residents and the observed influence 
is the difference in mean VMD for unmatched treatment and control residents. For the six (treatment/ 
control) combinations, they found BEPs as follows: inner-ring suburb/urban = 48 percent, suburb/ur-
ban = 67 percent, suburb/inner-ring suburb = 78 percent, exurb/urban = 84 percent, exurb/inner-ring 
suburb = 98 percent, and exurb/suburb = 95 percent).

3.1.3 	 Cao and Fan (2012)

Cao and Fan (2012) use propensity-score matching to control for self-selection with respect to person 
miles traveled, driving duration, and transit duration. This time taking 5537 households from the same 
2006 (North Carolina) Great Triangle Travel Survey as Cao et al. (2010), they designate high- and low-
density locations as treatment and control, respectively. In this study, they used a binary probit model, 
whereas Cao et al. (2010) used a binary logit model.

In addition to estimating the BEP, the authors discuss in greater depth whether and when matching 
is an appropriate means of controlling for selection. They caution that the method assumes that all vari-
ables affecting treatment assignments are observed, and that there is no “hidden” bias. This assumption 
would be violated if, for example, attitudes were not measured (which was not the case in their study, 
as detailed in Section 3.1.2). While sample selection models can, in principle, correct for selection bias 
even in the case of omitted influential variables, propensity-score methods cannot. This is because (as 
mentioned in Section 2.2) sample selection models control for correlations between unobservables of 
the selection equation and unobservables of the outcome equations, while propensity scores only control 
for correlations between observables of the propensity score equation and unobservables of the outcome 
equation (Winship and Morgan 1999; Cameron and Trivedi 2005). If attitudinal variables (or other 
omitted variables) that are in reality influential on travel behavior are not observed and included, then 
none of the propensity-score approaches can compensate for the bias that results from that omission.

They perform a sensitivity analysis using various caliper widths, since it is possible to obtain varying 
results with different caliper widths and the extent to which this occurs often tells us something impor-
tant about the outcome variable. For example, they found that varying caliper width produced the most 
variant results for transit duration among the three travel behaviors, and noted that such a result was 
not surprising given the high proportion of people who do not use transit at all. In other words, poor 
response to the sensitivity analysis in this case coincided with the travel behavior (outcome) variable tak-
ing on the same value most of the time. They also considered a 95 percent confidence interval for their 
estimates of the treatment effect,12 since point estimates may be misleading. Based on these confidence 
intervals, BEP ranged from 5 percent to 97 percent (across all three travel behaviors). While they caution 
that point estimates can be inaccurate or misleading estimators of the true BEP, the point estimates they 
did find for BEP were 72 percent, 34 percent, and 51 percent for person miles, driving duration, and 
transit duration, respectively.
11 The authors refer to this as the average treatment effect (ATE), citing D’Agostino (1998), but it appears to be the treatment 
effect on the treated, as described by Becker and Ichino (2002), Greene (2007), and others (personal communication of the 
first author with J. Cao, March 10, 2015). The same comment applies to the other two studies involving propensity -score 
matching. 

12 See footnote 11.
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3.1.4 	 Cao (2015)

Cao (2015) focuses on propensity-score matching, involving the same data that was used for propensity-
score stratification in Cao (2010) and for sample selection modeling in Cao (2009). He discusses some 
of the differences between the two approaches we consider in the present paper (plus a third, the statisti-
cal controls method). Using 1682 respondents from the 2003 Northern California survey, self-selection 
is controlled for with respect to VMD; similar to Cao (2009, 2010), traditional and suburban are the 
binary choices for the propensity-score equation, with treatment = traditional and control = suburban. 
Similar to Cao, Xu, and Fan (2010), which also employed matching, one-to-one matching without re-
placement and a caliper width of 0.01 was used, standard differences of the covariates of the propensity-
score equation were used to determine whether self-selection had been controlled for after matching, 
and BEP was calculated in the same way.13 He finds that about 75 percent of the built environment’s 
influence was attributable to the built environment itself. He compares this to his 2009 study (Cao 
2009, described in Section 3.2.2 of the present paper), which applies a sample selection model to the 
same data, where the result was 76 percent for the BEP.

3.2	 Sample selection

Sample selection models differ from ordinary regression outcome models in two ways. First, in our 
context the coefficients of the outcome equation are allowed to differ by each state of the endogenous 
selection variable (the binary, treatment-versus-control or urban-versus-suburban variable). Second, a 
selection correction term is added to each outcome equation in addition to the other covariates (as 
discussed in Section 2.3). The formulas for the selection correction terms depend on the assumptions 
made about the distribution of the error term of the selection equation. A probit selection equation is 
convenient since the error covariance among the three equations is then trivariate normal distributed as 
presented above, but certainly other structures are possible as discussed below (Bhat and Eluru 2009). 

3.2.1 	 Zhou and Kockelman (2008)

Zhou and Kockelman (2008) applied the mover-stayer sample selection model to a sample of 1903 
household observations from the 1998-99 Austin Area Household Travel Survey, supplemented with 
ArcGIS-encoded zonal data, to model daily vehicle-miles. Neighborhood type is defined at the level of 
Traffic Analysis Zones (TAZs), which are classified as “rural or suburban” or “CBD or urban.” Coun-
ter to the convention used in this paper and elsewhere (e.g., Cao 2010; Cao and Fan 2012; and Cao 
2015)—but consistent with the other two papers using sample selection approaches (Cao 2009; Bhat 
and Eluru 2009) as well as Cao, Xu, and Fan (2010)—they define treatment as being located in a subur-
ban or rural zone (perhaps so that the expected change in vehicle-based travel behavior will be positive). 
As with most public sector-sponsored household travel surveys, attitudes were not available, and the 
authors note that the sample selection model was used specifically for this reason.

They consider four treatment effects described in Heckman and Vytlacil (2005) and Heckman, To-
bias, and Vytlacil (2001): the average treatment effect (ATE), the treatment effect on the treated (TT), 
the local average treatment effect (LATE), and the marginal treatment effect (MTE). For the calculation 
of the BEP, only the first two are of interest. The ATE is the increase in VMT that would be expected if 
an individual randomly chosen from the entire population were to move from the CBD/urban environ-
13 See footnote 11.
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ment (control) to the rural/suburban (treatment) environment. The TT is the increase in VMT (relative 
to the VMT if living in an urban location) that would be expected from an individual randomly chosen 
from among suburban residents (i.e., from among those who have selected the treatment of living in 
a suburb). They compute the relative effects (i.e., ATE/TT) as an indicator of the BEP (without using 
that terminology). 

As far as we are aware, Zhou and Kockelman (2008) were the first to use the ratio of ATE/TT as 
a measure of the proportion of the total effect of the BE that can be considered “true,” i.e., remaining 
after self-selection is accounted for. For example, although Rosenbaum and Rubin (1983, 1984) talk 
about reduction in selection bias (and its corresponding estimate), they do not explicitly speak of a ratio 
between ATE and observed influence. Zhou and Kockelman (2008) found an ATE of 17.0 vehicle-
miles per day (indicating that a randomly selected household would increase VMT by 17.0 miles per day, 
on average, if moving from a CBD/urban environment to a rural/suburban environment), and a TT 
of 29.2 vehicle-miles per day (indicating that a household living in a rural or suburban environment can 
be expected to exhibit 29.2 more daily VMT than an observationally equivalent one living in a CBD 
or urban environment). This indicates a BEP of 58 percent. However, they also tested the sensitivity of 
the results to the selection model specification. When the presence of four or more visitors on the travel 
survey day was included in that model, they found that the ATE was 20.2 vehicle miles per day and TT 
was 22.5 vehicle miles per day, for a BEP of 90 percent. They conclude that further varying the specifica-
tion will produce yet different results, but based on the two specifications tested, they suggest values of 
10-42 percent for the role of self-selection (i.e., the complement of the BEP).

Note, however, that because Zhou and Kockelman (2008) reversed the labels of treatment and 
control, the TT of their study would correspond to the TUT of studies with the opposite labeling 
scheme (with the sign of the effect also reversed); i.e., in other studies it would be the TUT that would 
correspond to the average decrease in VMT if a randomly selected resident of a suburban neighborhood 
(i.e., an untreated person) could also be observed living in an urban neighborhood (i.e., receiving the 
treatment). Thus, if they had chosen the opposite labeling scheme, their computed BEP would differ 
by virtue of having a different denominator (while the numerator would remain the same except for a 
sign reversal). A similar problem would pertain to the propensity score matching methods as typically 
applied (except that it would be the observed-influence denominator that would remain the same except 
for the sign reversal, and the treatment-effects numerator that would differ). In contrast, as can be seen 
from the discussion in Section 2.3.1, propensity-score stratification (as applied in this context, to date) 
is indifferent to the choice of labels of “treated” versus “untreated.”

3.2.2	  Cao (2009)

Using 1479 respondents from a 2003 Northern California survey (same data as Cao 2010, 2015), Cao 
(2009) follows a procedure nearly identical to that of Zhou and Kockelman (2008). In addition, he con-
siders measures for whether self-selection had been controlled for with respect to vehicle-miles driven. 
The selection variable is traditional (control) versus suburban (treatment) location, where the categories 
were pre-determined as part of the original sampling design. Residential preferences and travel attitudes 
were available and allowed to enter both the selection and outcome equations (see Section 3.1.1 for the 
available variables). Not surprisingly, residential attitudes were somewhat more prevalent in the selec-
tion equation than were travel attitudes (three versus two variables, respectively), but travel attitudes did 
enter and were also clearly significant in the travel-behavior equations, whereas residential preferences 
were not significant in the latter case. A log transformation of weekly VMT was adopted as the outcome 
variable, so the equations for ATE and TT used in the calculation of BEP were in exponential form. 
Cao found an ATE of 25.8 miles and a TT of 33.8 miles per week, suggesting a BEP of 76 percent. As 
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with Zhou and Kockelman, however, this figure would presumably differ (by virtue of the denominator 
being different) if the treatment and control labels were reversed.

It is notable that built-environment variables were not included in either the selection equation or 
either of the two outcome equations. Although it might be appropriate to allow built environment vari-
ables into the outcome equations, it is more appropriate not to include them in the selection equation. 
This is because there is no obvious way to measure the BE of the non-chosen neighborhood type, and 
including the BE only of the chosen neighborhood type would be a misspecification (since the choice is 
assumed to be based on a comparison of BE characteristics across all alternatives, not just a function of 
the characteristics of the chosen alternative). Put another way, associations between built environment 
variables and the residential choice are more likely to indicate properties of that already-chosen built envi-
ronment rather than a causal influence on choosing it, and model fit statistics would artificially indicate 
a better causal model than is actually the case.

3.2.3 	 Bhat and Eluru (2009)

All of the models thus far have used conventional assumptions about the underlying error covariance 
structure of the equations involved. However, real data rarely follow these conventional assumptions to 
the extent we would like. For those cases where they do not, Bhat and Eluru (2009) explore alterna-
tives to conventional assumptions. They use a sample selection model, but unlike other studies, use a 
“copula”-based approach to relax the assumption of bivariate normally distributed errors between the 
selection equation and each outcome equation, which they assert can be restrictive and inappropri-
ate. They consider residential neighborhood choice (conventional vs. neo-urbanist, with conventional 
labeled the treatment condition, similar to Zhou and Kockelman 2008, but counter to most other 
studies) as a selection variable and daily household vehicle miles of travel (VMT) as the outcome vari-
able, using 3696 observations from the 2000 San Francisco Bay Area Household Travel Survey (BATS). 
Exogenous variables include household characteristics, employment characteristics, and neighborhood 
characteristics; attitudinal data were not available.

Heckman’s original formulation depends on using the IMR and assuming jointly normally distrib-
uted error terms for the selection and outcome equations. Lee (1983) generalized Heckman’s approach 
by allowing univariate error terms to be non-normal, using a technique to transform non-normal vari-
ables into normal variables. This is one method commonly employed for dealing with sample selection 
models if the selection equation is not probit, or possibly not even binary. For example, Lee’s method 
could be used in conjunction with multinomial logit (MNL) as the selection equation (although Dubin 
and McFadden, 1984, suggested an estimator more commonly accepted today to account for selection 
bias in the specific case of multinomial logit models, and Bourguignon et al. 2007 have suggested a very 
similar estimator to that of Dubin and McFadden’s, involving a minor relaxation of a restriction placed 
on the correlations of the error terms). 

Bhat and Eluru (2009, pp. 751–752) further generalize the possible relationships among error 
terms by using the copula—“a device or function that generates a stochastic dependence relationship 
(i.e., a multivariate distribution) among random variables with pre-specified marginal distributions.” 
Since random variables may not have the same marginal distributions, this may be desirable since it al-
lows for considerable flexibility in correlating random variables. They test six different possible copulas, 
respectively known in the literature as Gaussian, Farlie–Gumbel–Morgenstern (FGM), Clayton, Gum-
bel, Frank-Frank (F-F), and Frank-Joe (F-J). For each of those copulas, there is a different set of correc-
tive terms entered into the regression equations (analogous to the IMR for Heckman’s original model; 
see Bhat and Eluru, 2009, for more detailed formulas for the bias correction terms). 
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In the model they deem best (the F-F copula), they conclude that 83 percent14 of the difference in 
VMT between households residing in conventional and neo-urbanist neighborhoods is due to “true” 
built environment effects, while 17 percent is due to self-selection. However, as indicated in Section 
2.3.2, they use a different denominator than Zhou and Kockelman (2008) and Cao (2009). Specifically, 
their denominator is the weighted average of the treatment effect on the treated and the treatment effect 
on the non-treated. If they used only the treatment effect on the treated, consistent with the other two 
studies, then the value for BEP would be 51 percent—a substantial difference.

4	 Discussion and conclusions

In the now-sizable body of research dealing with the influence of residential self-selection on the impact 
of the built environment on travel behavior, the number of studies that quantify the built-environment 
proportion, or BEP (defined as the proportion of the total influence of the built environment that is 
not due to self-selection), is still relatively small. However, it is of policy relevance as well as academic 
interest, both to analyze the collective information provided by those studies, and to promote additional 
efforts to quantify this key measure through promulgating a description of the methods used to do 
so. Accordingly, the purpose of this paper was to review and analyze that specific set of literature, with 
respect to (1) methods used, and (2) results found. To keep the focus and length of the paper manage-
able, we limited ourselves to studies that used either propensity-score matching/stratification or a sample 
selection approach.15 We identified 10 analyses in seven studies that quantified the BEP using one of 
these methods.

	 With respect to computing the BEP, the specifics differed by the method used to control for 
self-selection. For propensity-score methods, the denominator was a simple difference of mean out-
comes between the treated and untreated groups (the “observed influence”), while the numerator was 
(for stratification) an “average treatment effect” (ATE) or (for matching) “treatment effect on the treat-
ed” (TT) that had been purged (to the extent possible) of the self-selection bias. For sample selection, 
the numerator was the average treatment effect (computed differently), representing the average change 
in travel behavior after controlling for self-selection (i.e., the true impact of the built environment), and 
the denominator was either a “treatment effect on the treated” that retained a “true” as well as a “bias” 
component, or the sample-size-weighted average of that quantity with the counterpart “treatment effect 
on the untreated.” The first of these two ways of computing the denominator is sensitive to the choice 
of which condition is labeled “treatment” versus “control.” We recommend that future studies use the 
formulation that is robust with respect to the choice of labels (namely, the weighted average of the treat-
ment effect on the treated and the treatment effect on the untreated).

	 With respect to the results found, they are far from unanimous, with estimates of the true influ-
ence of the built environment running the gamut from 34 percent to 98 percent of the total apparent 
influence. Clearly there are a number of factors that could account for this range: the studies involve sev-
eral different samples, collected at various locations and times, using different definitions of residential 
location categories, different labeling conventions (of treatment versus control) in some cases, different 
explanatory variables, and different outcome variables of interest, as well as different methodologies. 
But we still see considerable diversity even when many of these factors are held constant. For example, 
a single propensity-score stratification study (Cao 2010) finds BEPs ranging from 61 percent to 86 per-
cent, varying only the travel outcome variable within essentially the same dataset. Similarly, varying only 
the selection of which pairs of residential location categories to compare, Cao, Xu, and Fan (2010) finds 
BEPs ranging from 48 percent to 98 percent. The only evidence available that compares methodology 

14 Per their Section 6 and computation from Table 4 [(21.37/25.59) × 100 percent]. Their Section 5 refers to “87%”, which we 
believe to be a typographical error. 
15 We are aware of only a handful of studies that have quantified the BEP using other approaches.
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while holding other factors constant found the BEPs to be quite similar for propensity-score matching 
(75 percent, Cao 2015) and sample selection (76 percent, Cao 2009). However, more comparisons like 
these are needed to indicate whether this is a trend or a coincidence, especially given that (1) the lat-
ter study used the label-dependent denominator in computing the BEP (see the discussion in Section 
3.2.1), whereas the BEP measure in the former study is label-independent, and (2) the latter study has 
ATE in the numerator of the BEP, whereas the former study apparently has TT.

	 Considerable work remains for future research. First and foremost, we simply need more stud-
ies that quantify the BEP. Once the evidence base is larger, it could be fruitful to analyze the pool of 
such studies to see if any systematic variations in the BEP estimates can be discerned with respect to the 
factors identified above. We are particularly interested in whether the methodology per se makes a siz-
able difference. Work is underway to investigate this question, and also to expand the family of ways to 
estimate the BEP by transferring, to the extent feasible, methods used with one approach (such as statis-
tical controls) to other approaches (such as sample selection). We hope that this initial offering, together 
with the work in progress, will help stimulate additional contributions to improving our knowledge in 
this important area. 
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