
Abstract:  Traditionally, integrated land-use/transportation models 
intend to represent all opportunities of travel and household loca-
tion, maximize utilities and find an equilibrium in which no person or 
household could improve their satisfaction any further. Energy scarci-
ty, higher transportation costs, and an increasing share of low-income 
households, on the other hand, demand special attention to represent 
constraints that households face, rather than opportunities for utility 
maximization. The integrated land-use model SILO explicitly repre-
sents various constraints, including the price of a dwelling, the travel 
time to work, and the monetary transportation budget. SILO ensures 
that no household makes choices that violate these constraints. Imple-
menting such constraints helps SILO to generate more realistic results 
under scenarios that put current conditions under a stress test, such as a 
serious increase in transportation costs or severely increased congestion.

1	 Introduction

Households looking for a new place to live attempt to fulfill as many of their location preferences as 
possible. At the same time, however, households face a couple of constraints in a housing search. First 
and foremost, the price of a new dwelling is a constraint. Even though loans and mortgages allow 
households to afford places that exceed their immediately available budget, households have to get 
along with their income in the long run. This is why low-income households cannot afford moving 
into the most sought-after houses on the market. Income is an obvious constraint on housing choice 
for almost every household. 

Another constraint households face when looking for a new dwelling is travel time. An analysis of 
the 2007-2008 Household Travel Survey for the Baltimore/Washington region revealed that 86 percent 
of all workers travel less than 60 minutes to work, and 99 percent travel less than 120 minutes to work. 
Commuting for no more than two hours, therefore, is another constraint for most households, at least 
on a daily basis. Suitable home locations are even more restricted if more than one household member 
is working. As the average time spent on commuting does not change much over time (Zahavi, Beck-
mann, and Golob 1981), this constraint is unlikely to change much in the future. As a consequence, 
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average workers should be expected to move closer to their work location if congestion worsens, unless 
they have the opportunity to telework. 

Another constraint is constituted by the total household budget. According to the Consumer Ex-
penditure Survey1, the average U.S. household spends 18.2 percent of its after-tax income on trans-
portation. Should transportation become more expensive, households have to either adjust their travel 
behavior or reallocate their income. In reality, both happen. In some cases, particularly for low-income 
households, a steep increase in transportation costs may trigger a household relocation to a less expensive 
apartment to ensure that the household gets along with its income in the long run. 

The literature review (Section 2) shows that the majority of land-use models do not represent such 
constraints explicitly. Section 3 introduces the land-use model SILO, and Section 4 explains how con-
straints are treated in SILO. Section 5 shows model validation results and Section 6 presents conclusions 
and recommendations for further research.

2	 Literature review

One of the pioneering land-use models was designed by Herbert and Stevens (1960) in cooperation 
with Britton Harris as an equilibrium model simulating the distribution of households to residential 
land use. Lowry’s model of metropolis (Lowry 1964, 1966) is often considered to be the first computer 
model that truly integrated land use and transportation. The Lowry model assumed the location of 
basic employment exogenously and generated an equilibrium for the allocation of non-basic employ-
ment and population. Over the last five decades, this popular model has been implemented many times 
(e.g., Batty 1976; Wang 1998; Mishra et al. 2011). At least equally influential was Forrester’s Theory of 
Urban Interactions (1969). Even though it was an a-spatial model, this research on interactions between 
population, employment, and housing has influenced the design of many spatial land-use models de-
veloped since. 

Putman developed the integrated transportation and land-use model package (ITLUP) (Putman 
1983, 1991), where land use was modeled by the projective land-use model (PLUM) (Rosenthal, Mer-
edith, and Goldner 1972; Goldner, Rosenthal, and Meredith 1972; Reynolds and Meredith 1972). Lat-
er, PLUM was replaced by the frequently applied disaggregated residential allocation model (DRAM) 
and an employment allocation model (EMPAL).

Wilson’s entropy model (1967, 1970) generated an equilibrium by maximizing entropy of trips, 
goods flows, or the distribution of population. This model assumes a perfect equilibrium, which may 
never be reached in reality. Anas’ (1982) model called the residential location markets and urban trans-
portation created an equilibrium between demand, supply, and costs for housing. Anas’ model, rather 
than follow the traditional deterministic approach that assigns each dwelling to the highest-paying buy-
er, instead applies stochastic variation to preferences and decisions.

The MEPLAN model developed by Echenique is an aggregated land-use transport model (Ech-
enique, Crowther, and Lindsay 1969; Echenique et al. 1990; Abraham and Hunt 1999) that used the 
basic concept of the Lowry model as a starting point. The model can simulate a variety of both land-use 
and transport scenarios. MEPLAN has been applied to more than 25 regions worldwide (Hunt, Kriger, 
and Miller 2005, p. 332). Another modeling approach using the Lowry model as a starting point is the 
TRANUS model (de la Barra, 1989; de la Barra and Rickaby 1982; de la Barra, Perez, and Vera 1984) 
that simulates land use, transport, and its interactions at the urban and regional scale. 

Martínez (2002, 1996) developed a land-use model under the acronym MUSSA in which location 
choice is modeled as a static equilibrium. Residential and commercial land-use developments compete 
for available land. MUSSA used the bid-auction approach based on the bid-rent theory where con-
sumers try to achieve prices as low as possible and not higher than their willingness to pay (Martínez 
1Available online at http://www.bls.gov/cex/#tables
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1992). In the bid-rent theory, first introduced by Alonso (1964), land prices are an immediate result 
of the bid-auction process. In contrast, the discrete-choice approach—initially developed for housing 
choice by McFadden (1978)—models land being bought or rented with no instant effect on the price. 
Acknowledging that both approaches lead to similar results, Martínez argues elsewhere (1992) that the 
bid-auction approach and the discrete-choice approach should be integrated and seen as inseparable 
rather than opposed. 

Wegener (1999, 1998b, 1982) developed the IRPUD model as a fully integrated land-use trans-
port model. The household location choice is microscopic (Wegener 1984), simulating every household 
individually. The IRPUD model was one of the few early approaches that contradicted the common 
assumption that land-use models shall reach an equilibrium at the end of each simulation period (We-
gener, Gnad, and Vannahme 1986). Land-use development aims at equilibrium constantly, but due to a 
continuously changing environment and slow reaction times of households, businesses, developers, and 
planners, this equilibrium stage is never reached. The price of a new dwelling and the commute distance 
to the household’s main workplace are accounted for as true constraints in location choice. Similarly, 
the metroscope model for Portland, Oregon, (Conder and Lawton, 2002) compares expenditures for 
housing, transportation, food, health, and all other expenses to ensure that household budgets are not 
exceeded.

PECAS (Hunt and Abraham 2009, 2003) is another land-use model that represents an equilibrium 
of competing demand for developable land. Households relocate based on available floor space, prices, 
accessibilities, and other location factors. PECAS combines this bid-rent approach in a spatial economic 
model with a microscopic land-development model. DELTA (Simmonds and Feldman 2007) combines 
an economic model with households and job location model and a long-distance migration model.

Microsimulation was introduced by Orcutt et al. (1961) and subsequently applied to a series of 
modeling tasks, including travel behavior, demographic change, spatial diffusion, health and land use 
(Clarke and Holm 1987). The most influential microscopic land-use models include the California 
urban futures (CUF) model (Landis and Zhang 1998a, 1998b), the integrated land-use, transport and 
environment (ILUTE) model (Miller et al. 2004; Miller and Salvini 2001; Salvini and Miller 2003), 
the urban simulation (UrbanSim) model (Waddell 2002; Waddell et al. 2003), the learning-based trans-
portation oriented simulations system (ALBATROSS) (Arentze and Timmermans 2000), predicting 
urbanization with multi-agents (PUMA) (Ettema et al. 2004), SimDELTA (Simmonds and Feldman, 
2007) and the integrated land-use model and transportation system simulation (ILUMASS) (Strauch 
et al. 2005, Wagner and Wegener 2007). A common problem in microscopic modeling is stochastic 
variability between model runs. Gregor (2006) overcame this shortcoming in the land-use scenario 
developer (LUSDR) by running the same model hundreds of times and storing each model run as a 
potential future development. 

Good overviews of operational land-use/transport models are given particularly by Hunt, Kriger, 
and Miller (2005), Wegener (2004, 1998a, 1994), Wegener and Fürst (1999), Timmermans (2003), 
Kanaroglou and Scott (2002), the U.S. Environmental Protection Agency (2000), and Kain (1987). 
The literature review showed that most land-use models do not explicitly represent constraints. The 
majority of models employ equilibrium methods to reach an “ideal” distribution of households and land 
uses. Commonly, land use is viewed as a decision-making process in which users optimize their utili-
ties, rather than making choices among a limited set of alternatives. Notable exceptions are the IRPUD 
model and metroscope, which explicitly constrain households to move to dwellings that are within their 
respective price range. 
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3	 The land-use model SILO

SILO was designed as a microscopic discrete choice model. Every household, person, and dwelling is 
treated as an individual object. All decisions that are spatial in nature (household relocation and devel-
opment of new dwellings) are modeled with Logit models. Initially developed by Domencich and Mc-
Fadden (1975), such models are particularly powerful at representing the psychology behind decision 
making under uncertainty. Other decisions (such as getting married, giving birth to a child, leaving the 
parental household, renovating a dwelling, etc.) are modeled with Markov models by applying transi-
tion probabilities. 

SILO is integrated with the Maryland Statewide Transportation Model (MSTM) to fully represent 
interactions between land use and transportation. The model is built to work with less rigorous data col-
lection and estimation requirements than traditional large-scale land-use models. Rather than requiring 
costly data collection and time-consuming model estimation, SILO takes advantage of national averages 
where possible and transfers parameters from models that have been implemented elsewhere. Figure 1 
provides an overview of the SILO model. 

Figure 1:  Flowchart of the land-use model SILO

At the beginning, a synthetic population is created for the base year 2000. The U.S. Census Public 
Use Micro Sample (PUMS) 5 percent dataset2 is used to create this synthetic population. Using expan-
sion factors provided by PUMS, household records including dwellings are duplicated until the popula-
tion by PUMS zone (called a PUMA) matches 2000 census data. The location is disaggregated from 
PUMA to model zones using the zonal socioeconomic data of the MSTM as weights. Work places are 
created based on MSTM zonal employment data. For each worker, a work location is chosen within the 
recorded work-PUMA and based on the average commute trip length distribution found in the 2007-
2008 Household Travel Survey for the Baltimore/Washington region. SILO simulates events that may 
occur to persons, households, and dwellings:

The housing market is modeled explicitly. Vacancy rates by five dwelling types and 31 regions are 
used as a proxy for additional demand. If vacancy rates drop, developers will add additional dwellings 
if zoning permits. To find the best locations for new dwellings, developers mimic the location choice 

2 Available for download at http://www2.census.gov/census_2000/datasets/PUMS/FivePercent/
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behavior of households, and thereby, developers are likely to build the most marketable new dwell-
ings. New dwellings are released into the housing market with a one-year delay to account for the time 
required for planning, approval, and construction. A hedonic price model is used to model changes in 
housing costs. Low vacancy rates lead to a fairly quick upward adjustment of prices, while high vacancies 
lead to a gradual price reduction. This reflects observed behavior that landlords use to attempt to keep 
prices high, even if demand is rather low.

From one year to the next, certain events may trigger other events. For example, if a child is born, 
the household will have a higher probability of moving to a larger dwelling. Within one year, however, 
events are modeled in random order to avoid path dependency. A random number is assigned to each 
event. Events are sorted by this number in ascending order and executed in this sequence. 

SILO is set to match observed land-use changes from 2000 to 2012 (so-called back-casting) and 
validated in 2012. Currently, the model runs to 2040. While the entire model is fully operational, the re-
mainder of this paper focuses on household relocation for which constraints are implemented explicitly.

The model covers demographic changes, household relocation, and real estate changes. Workplaces 
and commercial floor space are not modeled explicitly at this point but exogenously given based on the 
Financially Constrained Long-Range Transportation Plan (CLRP). In the future, it is planned to add a 
sub-model that simulates the employment side.

SILO is open-source software and was initially developed with research funding by Parsons Brinck-
erhoff, Inc. The prototype application was implemented for the metropolitan area of Minneapolis-St. 
Paul, Minnesota. Currently, the Maryland Department of Transportation supports the implementation 
of an improved version for Maryland. The acronym stands for “simple integrated land-use orchestrator,” 
as the model is meant to be implemented more easily than traditional large-scale models that require 
extensive model estimation. A visualization tool is included for the analysis of model results. Further 
information on model design and implementation can be found at www.silo.zone.

4	 Modeling constraints

SILO distinguishes location factors that are desirable and those that are essential. Finding a place to live 
within someone’s housing budget, for example, is considered to be an essential location factor. Having 
a particularly large apartment, on the other hand, is a desirable location factor only. If all other location 
factors are excellent, a household might compromise dwelling size. 

In contrast to desirable utilities, essential utilities are assumed to be mandatory to be fulfilled. The 
three essential location factors represented by SILO include housing costs, commute travel times, and 

Table 1:  List of events simulated in SILO

Household
Relocation Buy or sell cars
Person
Aging Divorce
Leave parental household Death
Marriage Find a new job
Birth to a child Quit a job
Dwelling
Construction of new dwellings Demolition
Renovation Increase or decrase of housing price
Deterioration
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transportation costs. If one of these three utilities is 0, the utility for the entire dwelling has to be 0. This 
is achieved by using the Cobb-Douglas function that aggregates utilities by multiplication. 

ud=utilp 
α∙utilct 

β∙utiltb 
γ∙utildesFac 

(1-α-β-γ)	 (1)
	 where:
	 ud	 Utility of dwelling d
	 utilP	 Utility of the price p of dwelling d (see Section 4.1)
	 utilct	 Utility of the commute time ct from dwelling d (see Section 4.2)
	 utiltb	 Utility of the transportation budget tb required for dwelling d (see Section 4.3)
	 utildesFac 	 Utility of non-essential factors of dwelling d (see Section 4.4)

α, β, γ 	 Parameters as weights for each factor, set differently by household type

This way, it is ensured that households do not move into a place that violates a budget constraint. 
The following sections describe the three essential location factors (Sections 4.1 to 4.3) and desirable 
location factors (Section 4.4). 

4.1	 Housing cost constraints

The costs of a dwelling form an immediate constraint for any relocation choice. While households may 
exceed their housing budget temporarily, households have to get along with their income in the long 
run. The distribution of rent and mortgage payments in the base year, according to PUMS data, is used 
as guidance on how much households are willing to pay for housing. Figure 2 shows the aggregation to 
reveal the willingness to pay rent or to pay for a mortgage. As expected, higher income households tend 
to pay more for housing than low-income households. 

Figure 2:  Willingness to pay rent by household income
Source: PUMS 2000 database

The relationship between income and housing expenses shown in Figure 2 is used to calculate the 
utility of a given price using equation 2.

d                d                d               d

d

d

d

d
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utilp =  1- Σ hhShareprice  ,inc	 (2)
	 where:

utilpd		 Utility of price p of dwelling d 
			  Share of households with income inc who have paid pricej in the base year

The higher the price, the lower the utility, and the utilities decline faster for low-income households 
than for high-income households. When the price is high enough that the share of households paying 
this amount for housing reaches zero, the utility becomes zero, and that dwelling becomes unavailable 
for this household type.

4.2	 Commute travel time constraint

The travel time to work is a primary driver for household location choice. With the exception of workers 
who regularly work from home, the travel time from home to work is an important constraint when 
choosing a new place to live. Travel time to work is remarkably constant over time (Zahavi, Beckman, 
and Golob 1981; van Wissen, Golob, and Meurs 1991). The aforementioned household travel survey 
for the Baltimore-Washington region was analyzed for the time spent on home-to-work trips. Because 
respondents tend to round their travel time to even numbers (for example, 12 percent reported their 
commute to be exactly 30 minutes), the observed trip length frequency distribution is lumpy and needs 
to be interpolated. Figure 3 shows the estimated gamma functions representing the observed trip length 
frequency distribution in minutes for commute trips. The gamma functions were calibrated to match 
the reported average travel time.

Figure 3:  Estimated commute trip length frequency distributions in minutes for rural, suburban, and urban residents
Source: 2007-2008 household travel survey for the Baltimore-Washington region

Residents living in the urban counties in Baltimore, Washington, Arlington, and Alexandria have 
above-average commute times. Even though their average commute trip lengths of 9.8 miles is shorter 
than the average commute trip length of outer suburbs residents (15.5 miles), urban densities lead to 
more congestion, and therefore, residents need more time to get to work. Also, the transit share is much 

 d		                        j  

pricej<priced

pricej

j
hhShareprice  ,inc
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higher in urban areas, which often leads to longer travel times. The trip length frequency distributions 
in minutes are expected to not change significantly in the future. 

When households look for a new housing location, the job locations of all household members 
are taken into account. As SILO is designed as a microsimulation, the work locations of all household 
members are known. Dwellings that would result in a commute of more than 200 minutes for any 
worker in a household are given a utility of zero. It was confirmed with the survey that the average travel 
time per worker is almost identical (within 3 percent) for single-worker households and multiple-worker 
households, which allows application of the same trip length frequency distribution probabilities for all 
households. The left map in Figure 4 shows an example of a work location in North Bethesda, Maryland 
(turquoise dot). The trip length frequency distribution in minutes is used to estimate the utility in terms 
of commute distance for every zone (shown in brown-to-yellow colors).

Figure 4:  Likely housing locations for a household with workers in North Bethesda (left), Columbia (center), and both work 
locations (right)

The map in the center shows the home location probability for a person working in Columbia, 
Maryland. If these two persons lived in the same household, their joint area within a reasonable distance 
to their work locations is shown in the map on the right side of Figure 4. SILO explicitly represents 
this constraint when searching for a new housing location. The average commute trip length frequency 
in minutes shown in Figure 3 with a dotted line is scaled to values between 0 and 1 and applied as the 
commute distance utility. 

Unfortunately, telework is not represented explicitly in SILO at this point. An employee working 
from home a few days per week is likely to be less constrained by the location of her or his employer 
and willing to accept longer commute travel times for the few days this person is actually commuting to 
work. It is planned to enhance the model to allow certain occupation types to telecommute, and thereby, 
offset some of their travel time budget.

Another shortcoming worth mentioning is that the constant travel time budget seems only to be 
reasonable with conventional modes of transportation. Should driverless cars become widely available, 
the value of time is expected to change substantially (Cyganski, Fraedrich, and Lenz 2015). Traveling 
in driverless cars may lessen the burden of commuting and thereby reduce this constraint in housing 
location in the future. 

4.3	 Household budget constraint

Another constraint explicitly reflected in SILO covers household expenditures. According to the Con-
sumer Expenditure Survey3 of the Bureau of Labor Statistics, households spent an average of 18.2 per-
3 Data available online at http://www.bls.gov/cex/home.htm
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cent of their after-tax income on transportation (fixed and variable costs) in 2000. Low-income house-
holds spent as much as 36.1 percent of their after-tax income on transportation. If transportation costs 
rise, these households will need to shift some expenses. While affluent households will simply reduce 
savings or discretionary spending to cover increased transportation costs, low-income households may 
struggle to cover substantially higher transportation costs. A household searching for a new home will 
at least roughly estimate transportation costs and consider carefully if transportation costs at a given 
home location are within the budget. A low-income household may decide to locate closer to the work 
location or choose a transit-friendly environment that may allow reducing the number of cars owned 
by the household. 

Figure 5 compares average household income with average expenditures. The plot shows data for 
SILO’s base year 2000, and data for 2005 and 2010 were analyzed and displayed very similar patterns. 
Interestingly, households in income categories with an annual after-tax income below $41,500 spent, 
on average, more money than they earned. According to the Bureau of Labor Statistics, such households 
draw on savings or borrow money. Students may get by on loans, and retirees may rely on savings4. 
As SILO does not trace debts, a household may temporarily accumulate; it simply acknowledges that 
households have access to money to cover their expenses. For example, a household with an after-tax 
income of $7,192 (left-most point in Figure 5) is assumed to have access to $15,703 to spend. 

Figure 5:  Household income and expenditures
Source: Consumer Expenditure Survey, BLS

A polynominal curve has been estimated to reflect the relationship between income and expendi-
tures (shown with a red dashed line in Figure 5). For household incomes greater than $41,499 (whose 
income exceeds expenditures), the entire income is assumed to be available for expenditures, even 
though the average household at that income level saves some money.

4 For a more detailed discussion of this phenomenon compare http://www.bls.gov/cex/csxfaqs.htm#q21
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(3)

	 where:
eh	 Budget available for expenditures of household h
inch	 Income of household h
α, β, γ 	 Parameters, estimated to α = -2E-6, β = 0.8229 and γ = 10,794 [note that parameter names 	

α, β and γ are reused in several equations even though they relate to different parameter 	
sets]

 Due to the parameter γ, the available money for expenditures can never drop below $10,794, even 
if the household income is reported as 0. According to the Consumer Expenditure Survey, expenses 
for gasoline and motor oil make up between 2.6 percent (for high income) and 3.9 percent (for low 
income) of all household expenses. Though this may not seem high, an increase of travel costs may be-
come a serious burden for low-income households. Litman (2013) suggested that fuel price elasticity is 
between -0.1 and -0.2 for short-run and between -0.2 and -0.3 for medium-run adjustments. Short-run 
adjustments include choosing different trip destinations and switching the mode, while long-run adjust-
ments (which typically apply after one to two years) include the purchase of more fuel-efficient vehicles 
and selecting more accessible home and job locations. Because a household move is part of a medium- 
to long-run adjustment, the higher elasticity with an average of -0.25 was chosen in SILO; should gas 
prices increase by 10 percent, travel demand is expected to decline by 2.5 percent. Transportation costs 
tc are calculated based on auto-operating costs (set to 8.1 cents per mile in the base scenario), the dis-
tance to work, and transportation required for other purposes such as shopping, dropping off children 
at childcare, doctor visits, etc. For a scenario that analyzes the impact of higher fuel costs, the adjusted 
transportation expenditures are calculated by:

eth=tcs(1+ tc  -tc   •el)								 (4)
	 where:

eth	 Expenditures of household h for transportation
tc	 Transportation costs (r for reference case and s for alternative scenario)
el	 Elasticity of travel demand on transportation costs, set to -0.25

Currently, the elasticity is held constant, even though it is commonly assumed that elasticities rise 
as fuel prices increase. However, no data were readily available to quantify this relationship. Depending 
on future improvements in vehicle technology, the price per mile might drop, though increasing energy 
prices may offset technological advances. Currently, transportation costs per mile are kept unchanged 
from 2000 to 2040. 

Costs for transit are not considered at this point, but auto travel costs are used as a proxy for 
the costs transit riders would face. This simplification is used for two reasons. First, the MSTM does 
not provide reliable transit fare values. In the future, general transit feed specification (GTFS) data are 
planned to replace existing transit networks, which is expected to overcome this shortcoming. Secondly, 
SILO does not know which mode of transport is going to be used by each traveler in the MSTM. While 
assumptions for zero-car households are easy (most of them will use transit), modal predictions for other 
households are difficult. However, given that transit fares are considered to be comparatively high in this 
region, the auto operating costs appear to be a reasonable proxy for transportation costs even for transit 
riders. 

In addition to adjusting travel behavior and locations, many households will need to rebalance 

tc
s     r
r

5 Assumed data points for income/discretionary spending: [$0/$100; $20,000/$1000; $40,000/$2200; $100,000/$10,000; 
$150,000/$20,000]
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expenditures if transportation costs rise. Figure 6 shows the relative size of various expenditure types. 
The total expenditure is identical to the expenditure line shown in Figure 5, and the shares of various ex-
penditure categories were also estimated by polynominal functions using observations of the Consumer 
Expenditures Survey. A certain share of “other expenditures” is assumed to be discretionary (such as 
going out for dinner, going to the movie theater, vacationing, etc.) and could be used to offset increased 
transportation costs. No data were available to quantify discretionary spending, and a few data points5 

were assumed to estimate a smooth curve for the discretionary spending shown in Figure 6. 

Figure 6:  Share of expenditure types by household income
Source: Consumer Expenditure Survey, BLS

A binomial logit model (equation 5) is used to calculate the utility for transportation costs. If the 
discretionary income and savings are insufficient to cover the transportation costs of a given dwelling, 
the utility for transportation costs at this dwelling is set to 0.

if (edis,h + sh < tc): (5)

if (edis,h + sh < tc):
	 where:

utiltbd	 Utility of dwelling d for transportations budget tb
β 	 Parameters describing sensitivity of increased transportation costs
edis,h	 Discretionary expenditures of household h
sh	 Savings of household h

For high-income households, this utility will always be close to 1, as an increase in transportation 
costs is insignificant for these households. Households with a lower income, however, will find a lower 
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utility if transportation costs at a given dwelling are high. Should transportation costs exceed the discre-
tionary income plus savings, the utility for the dwelling will be set to 0, which prevents this household 
from moving into this dwelling.

4.4	 Desirable location factors

In addition to housing costs, commute travel times, and transportation costs (described in Sections 4.1 
to 4.3), a number of further location attributes are included that are deemed to be desirable but nones-
sential. Such location factors include the size and the quality of the dwelling, the accessibility to popu-
lation and employment by auto and transit, low crime rates, and the quality of schools in the school 
district of a dwelling. While these location factors are desirable, one strong attribute may compensate 
for another weak attribute. For example, a house in the suburbs may be weak in terms of accessibility 
but strong in terms of size. In contrast, urban apartments tend to be weaker in size, but provide excellent 
accessibilities. A strong attribute may offset a weak attribute, depending on the household preferences. 
Those location factors are combined by weighted addition.

	 utildesFac  =α∙usize  +β∙uquality  +γ∙uautoAcc  +δ∙utransitAcc  +ε∙uschoolQual  +(1-α-β-γ-δ-ε)∙utilcrimeIndex  	 (6)

	 where:
utildesFac  	 Utility of desirable (but nonessential) factors for dwelling d
α, β, γ…	 Parameters, set differently by household types
ufactor 	 Utility of attribute of dwelling d (currently implemented: size, quality, auto accessibility, 	

 transit accessibility, school quality, and county-level crime index) 

5	 Sensitivity testing and model validation

Validating land-use models tends to be more challenging than validating transportation models. While 
counts are generally perceived as sufficiently accurate to validate transportation models, no comparable 
dataset exists for land-use models. Two approaches were applied to validate SILO. First, sensitivity tests 
were conducted in which single parameters were modified and the changed model results were ana-
lyzed for reasonability. This is not considered to be a true validation in the traditional sense of compar-
ing observed with modeled data, but it is rather a reasonability check. Such sensitivity tests have been 
completed for many variables, including parameters to calculate housing utilities, marriage and divorce 
probabilities, probability to leave the parental household, birth probabilities, initial housing vacancy 
rates, in-migration and out-migration assumptions, land capacity for future development, accessibility 
parameters, and auto-operating costs. Changes in model results were small and moved in the expected 
direction of change. 

Secondly, rather than starting the model in a current base year, “back-casting” from 2000 to 2012 
was applied. Figure 7 shows a scatter plot that compares observed and modeled number of households 
by county (R2 = 0.991, RMSE = 10,107, Percent RMSE = 12.6). Modeled population numbers are the 
result of simulating 12 years in one-year increments, and observed population was collected from the 
five-year population estimate of the American Community Survey (ACS). Several counties in Maryland 
are slightly overestimated by the model, while Fairfax County (including Fairfax City and Falls Church 
City) falls short by 10 percent. This deviation along the state line is largely due to the fact that Maryland 
and Virginia have different methodologies of accounting for redevelopment opportunities (including 
greenfield development and infill development). Maryland traditionally has promoted denser develop-

d                      d                          d                             d                                d                                  d                                                                             d

d

d
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ment and has provided higher development capacity numbers than Virginia. Hence, the model expects 
more opportunities for growth in Maryland than in Virginia. It is investigated currently whether devel-
opment capacities can be calculated by a unique method for the entire study area. 

Figure 7:  Validation of SILO results against 2012 ACS population data by county

SILO results were also compared at the zonal level against 2012 data from transportation models 
for Baltimore, Washington, DC, and Delaware. At this zonal level, an RMSE of 1123 and a Percent 
RMSE of 9 were found. The provenance of their zonal data is unknown, which is why this comparison 
does not count as validation but only as another reasonability check.

6	 Conclusions

Many land-use models focus on representing utility maximization, finding equilibriums, and optimally 
allocating limited resources. The famous Lowry model was built to reach an equilibrium between loca-
tion of work places and location of households every simulation period (Lowry 1964). Similarly, most 
models using Alonso’s bid-rent approach (Alonso 1964) assume an immediate equilibrium between land 
prices and demand for land. Dynamic urban models, in contrast, explicitly represent time delay and lim-
ited information that lead to imperfect equilibriums (Harris and Wilson 1978; Wegener 1986). While 
bid-rent models are assumed to better represent land prices, discrete choice models often are expected to 
more realistically represent delays as they happen in reality. For example, newly demanded housing is not 
available to move into right away, as planning, obtaining building permits, and construction may take 
more than a year from when the demand is realized to when the first household may move in. 

Wegener (2014, p. 753-755) identified three principal challenges for land-use modeling: represent 
environmental impacts, decline rather than growth, and the impacts of the future energy crises. Test-
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ing policies that address environmental impacts, such as carbon taxes, road pricing, or energy-efficient 
buildings have an immediate impact on household budgets. Planning for decline requires reallocating 
limited resources, including closing of schools or redevelopment of brownfield sites. A future energy 
crisis may limit the availability of fossil fuels for transportation or heating and cooling, with an im-
mediate impact on household mobility and budgets. If these challenges hold true, representing con-
straints will become even more important. If models miss representing changes in travel behavior and 
location choice under increasing transportation costs, model results will be less realistic and difficult to 
defend. If congestion worsens and people spend more time traveling, models that miss adjusting des-
tination choice, mode choice, and trip chaining will produce unlikely results. Representing constraints 
rather than the entire map of opportunities will become more important in a scarce energy future.  
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