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APPENDIX 1: The National Propensity to Cycle Tool for England (PCT-England), 
version 1: Description of methodology for scenario-building 

 
A1.1 Datasets for model building and model parameterisation 
 
To estimate cycling potential, the Propensity to Cycle Tool (PCT) was designed to use the best 
available geographically disaggregated data sources on travel patterns. Currently for England 
and Wales this is the 2011 Census data on main mode of travel to work. For this reason the 
commuting layer was the first layer added to PCT-England.  The 2011 Census was conducted in 
England and Wales on 27th March 2011 and covered an estimated 94% of the population [1].  All 
individuals aged 16 or over with a current job were asked “How do you usually travel to work? 
(Tick one box only, for the longest part, by distance, of your usual journey to work)”.  The 
commuting layer of PCT-England is based on the 22,676,958 commuters living in England, with 
adults who reported that their home address was also their place of work being treated as non-
commuters. We hope in due course to add a commuting layer of PCT-Wales based on the 
1,226,591 commuters living in Wales. 
 
The core input dataset contained origin-destination (OD) pairs that linked each commuter’s 
usual place of residence to the workplace location of their main job, and disaggregated these 
OD pairs by commute mode (N= 2,339,535 OD pairs for commuters living in England, 92,206 OD 
pairs for commuters living in Wales, available as an open-access dataset from 
https://wicid.ukdataservice.ac.uk/).  Usual place of residence was identified at the level of the 
middle layer super output area (MSOA); MSOAs are administrative regions designed to contain 
a population of around 7500 individuals (average 3300 commuters). Workplace location was 
likewise identified at the MSOA level for those with a fixed workplace within England or Wales 
(90.5% commuters), and OD pairs were also present to capture commuters with no fixed 
workplace (9.1% commuters), working outside England or Wales (0.3% commuters) or working 
on an offshore installations (0.2% commuters).  These OD pairs are directional, with one OD pair 
for travel from origin A to destination B, and another for travel from origin B to destination A.  
We enhanced this OD dataset by merging in other Census and route characteristic data, 
including the number of male and female commuters and the number of male and female 
cyclists in each OD pair (see Section A1.3.4); the distance and gradient of the ‘fastest’ routes 
estimated by CycleStreets.net (see Section A1.2); and the background mortality rate for existing 
and new cyclists under different scenarios (further details below in Section A1.5). 
 
In addition to these input datasets, some of our analysis decisions and model parameterisation 
drew on analyses of the National Travel Surveys (NTS) in England and Wales (2008-2014, 
although data for Wales only collected up to 2012, accessed from 
http://discover.ukdataservice.ac.uk/), the Netherlands (2010-2014, accessed from 
https://easy.dans.knaw.nl/ui/home) and Switzerland (2010, obtained from the Swiss Federal 
Statistical Office, Neuchâtel [2], with data processing by Thomas Götschi).  All three are 
nationally-representative surveys that include a travel diary, of duration 1 week in England and 
1 day in the Netherlands and Switzerland. 
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A1.2 Estimating route distance and hilliness gradient across OD pairs 
 
To model propensity to cycle we assigned distance and hilliness values to OD pairs for four 
different types of OD pair, as summarised in Table 1.  The most important of these categories 
were between-MSOA flows of <30km, which account for 70% of all commuters and almost 80% 
of commuter cyclists. For each of these OD pairs we estimated the fastest route cycling distance 
between the population-weighted centroids of the origin and destination MSOA. We selected a 
30km upper limit because above this very few commute trips are cycled in the English and 
Welsh or Dutch NTS, even among ebike owners (e.g. the proportion of commute trips 30-40km 
cycled was 0.3% among English or Welsh adults, and 2.9% among Dutch ebike owners).  Fastest 
route distance was assigned using a routing algorithm ‘developed for cyclists by cyclists’ by the 
not-for-profit organisation CycleStreets (www.CycleStreets.net). Their main product is the 
journey planner which estimates ‘fastest’, ‘quietest’ and ‘balanced’ routes along roads, cycle 
paths and other travel network features (see 
http://www.cyclestreets.net/help/overview/#journeyplanner for more information) using data 
from OpenStreetMap (http://www.openstreetmap.org).   For each route, we also extracted the 
total change in gradient experienced along the course of the route, as estimated by CycleStreets 
using data from the Ordnance Survey's 'OS Terrain 50' open access dataset1. A gradient of 2% 
indicates that for every 100m travelled horizontally the route involves a total change in vertical 
distance of 2m.  This change of 2m could potentially reflect a rise of 2m or a fall of 2m or, for 
example, a rise of 1m followed by a fall of 1m.  
 
For commuters living and working within the same MSOA, we estimated the average commute 
distance as one third the average of the three shortest between-MSOA OD pairs of the origin 
MSOA.  MSOA gradient was estimated as the average of the gradient of these three shortest OD 
pairs.  These decisions generated associations between distance, hilliness and cycling 
prevalence that closely matched the associations observed in between-MSOA OD pairs. 
 
For commuters with ‘no fixed workplace’ or working overseas we did not have access to data 
that would allow us to assign values for the average distance that commuters would have to 
travel to cycle to work, nor could we assign the average hilliness of their routes.  Likewise for OD 
pairs longer than 30km, we did not think it meaningful to calculate the apparent fastest-route 
cycling distance between the origin and destination as we suspected that in such pairs a large 
majority of cycle commuters were in reality travelling a much shorter distance (e.g. travelling to 
their workplace from a second home in an unknown location).  Yet although we could not 
estimate route-allocated cycling distances for commuters in these OD pairs, we did estimate the 
average distance travelled by cyclists, as described in the final column of Table 1.  This allowed 
us to include the existing cyclists in these OD pairs when estimating the health and carbon 
impacts of the current levels of cycling compared to a ‘no cyclists’ counterfactual (see Section 
A1.4). 

                                                 
1 see https://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html 

https://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html
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Table 1: Summary of parameter and propensity estimation across different types of OD pairs in the PCT model 

Type of OD pair % of 
OD 

pairs 

% of 
comm-
uters 

% of 
cyclists 

at 
baseline 

Included in 
count of 

cyclists at 
baseline? 

Modelled 
as 

increasing 
in 

scenarios? 

Fastest-
route 

cycling 
distance for 
commuters 

Gradient of 
fastest 
cycling 

route for 
commuters 

Inputs to 
propensity 

to cycle 
calculation 

Distance 
travelled by 
cyclists, for 
health and 

carbon impacts 

Type 1: <30km, 
between MSOAs 

44.1% 69.6% 78.0% Yes Yes From 
CycleStreets 

From 
CycleStreets 

Distance + 
gradient 

Equal to 
fastest-route 
distance in OD 
pair 

Type 2: within 
MSOAs  

0.3% 9.3% 13.3% Yes Yes 1/3 mean 
distance in 
shortest 3 
between-
MSOA pairs 

Mean 
gradient of 
shortest 3 
between-
MSOA pairs 

Distance + 
gradient 

Equal to 
fastest-route 
distance in OD 
pair 

Type 3: No fixed 
workplace 

0.3% 9.1% 4.9% Yes Yes Not 
estimated 

Not 
estimated 

MSOA mean 
propensity 
to cycle in 
type 1 and 2 
OD pairs 

Mean distance 
of cyclists in 
type 1 and 2 OD 
pairs <10km 
apart in the 
MSOA in 
question† 

Type 4: >30km 
within England or 
Wales, or 
workplace outside 
England or Wales 

55.3% 12.0% 3.9% Yes No Not 
estimated 

Not 
estimated 

Not 
estimated 

Mean distance 
of cyclists in 
type 1 and 2 OD 
pairs 
nationally‡ 

† Among individuals who said cycling was their usual main commute mode in the English and Welsh NTS, the 
average total cycle commute distance across the week was similar between those who had a fixed workplace 
<10km from their home (N=1101, 24.6km) versus those who worked at different places (N=136, 25.7km). 
‡The English and Welsh NTS did not provide adequate data on workplace location to test this assumption, but what 
testing was possible indicated that this assumption may be somewhat conservative.  Specifically, among individuals 
who said cycling was their usual main commute mode, the average total cycle commute distance across the week 
was lower between those who had a fixed workplace <30km from their home (N=1283, 31.6km) versus those who 
worked overseas or made at least one commute trip of >30km (N=31, 44.4km).  Given the limitations and small 
sample size of this analysis, it seemed better to adopt this potentially conservative approach. 
 

A1.3 Modelling propensity to cycle, and numbers of cyclists, across four scenarios 
 
A1.3.1 Modelling baseline propensity to cycle in the 2011 Census 
 
In order to generate ‘what if’ scenarios regarding possible future levels of cycling, we first 
sought to model current propensity to cycle – i.e. the current proportion of commuters who 
cycle to work.  Again, we did this in different ways for different types of OD pairs, as set out in 
Table 1.    
 
For all within-MSOA and between-MSOA OD pairs in England and Wales with a fastest-route 
distance of <30km, we modelled the relationship between the proportion of commuters cycling 
(the dependent variable) and the fastest route distance and route gradient (the two explanatory 
variables).  We did this using an individual-level logit model, expanding the ~1.1 million OD pairs 
to their constituent ~19 million commuters.  Distance decay was modelled using linear, square-
root and square terms (Equation 1A). The ‘gradient’ variable was entered as the original 



4 

 

gradient derived from CycleStreet.net minus 0.97%, which is the estimated average route 
gradient in the Netherlands (see Box 1).  By centring our gradient measure on the estimated 
Dutch average in this way, we facilitated the subsequent addition of ‘Go Dutch’ parameters to 
the baseline equation (see Section A1.3.4).   
Box 1: Estimating hilliness in England, Wales and the Netherlands 
 

We calculated the average gradient of each lower super output area (LSOA) in England and Wales using elevation 
data from NASA’s Shuttle Radar Topography Mission (‘Version 4’ dataset, available at http://srtm.csi.cgiar.org/).   
Across the UK, the average resolution of the raster is 56.5m east-west and 92.6 m north-south. We converted the 
elevation data into a gradient in degrees for each raster cell (using R’s ‘raster’ package), and aggregated these to 
generate the average per LSOA.  We likewise calculated average hilliness of ‘Neighbourhoods’ in the Netherlands.  
These Neighbourhoods are administrative geographical units created by Statistics Netherlands that contain an 
average of 1424 individuals.  They are therefore of a similar average size to LSOAs in England and Wales, which are 
designed to contain approximately 1500 individuals each.  The Statistics Netherlands neighbourhoods vary 
considerably in size, however, and so we weighted by population when making comparisons to the distribution of 
LSOAs in England and Wales. 
 

A comparison of the gradient distribution of the English and Welsh LSOAs with the Dutch Neighbourhoods 
confirmed that the average level of hilliness in the Netherlands is much lower than in England and Wales: for 
example, the average population-weighted gradient of Neighbourhoods in the Netherlands is 0.69 degrees, but 
only 12% of the English and Welsh population lives in Lower Super Output Areas with an average gradient of 0.69 
degrees or below. We assumed that the same relationship applies to commuting routes, i.e. that the average 
commuting route gradient in the Netherlands is equal to the gradient experienced by commuters on the 12th 
percentile for gradient in England and Wales.  In the English and Welsh OD data, commuters on the 12th percentile 
for route gradient experienced a gradient of 0.97% (as estimated by CycleStreets).  We therefore subtracted 0.97% 
from our measure of gradient when building our propensity to cycle model, and thereby sought to centre the 
model on the estimated average gradient for trips in the Netherlands.   In addition, when pooling English, Welsh 
and Dutch NTS data to estimate the relative increase in propensity to cycle in a ‘Go Dutch’ scenario, we weighted 
the English and Welsh participants such that the hilliness profile of their home area corresponded to that of the 
Netherlands (weights presented in final column of Table 2).  In combination, these measures allowed us to estimate 
‘Go Dutch’ parameters in a way that did not overestimate the propensity to cycle in a ‘Go Dutch’ scenario by 
ignoring the fact that the Netherlands is flatter than England and Wales. 
  

Table 2: Distribution of hilliness in ones area of residence, in England and Wales versus the Netherlands 
Twentieth of home-
area gradient 
(England & Wales) 

% English & Welsh 
population in 
twentieth (A) 

% Dutch population with 
comparable home-area 

gradient (B) 

Weight given to English and Welsh 
NTS participants, according to their 

home-area gradient (B/A) 

1 (flattest) 5% 32.5% 6.49 
2 5% 25.6% 5.12 
3 5% 15.7% 3.15 
4 5% 10.1% 2.01 
5 5% 5.3% 1.05 
6 5% 3.3% 0.66 
7 5% 2.1% 0.42 
8 5% 1.3% 0.26 
9 5% 0.9% 0.18 
10 5% 0.6% 0.12 
11 5% 0.6% 0.12 
12 5% 0.5% 0.09 
13 5% 0.4% 0.08 
14 5% 0.3% 0.05 
15 5% 0.3% 0.06 
16 5% 0.2% 0.04 
17 5% 0.2% 0.05 
18 5% 0.1% 0.02 
19 5% 0.1% 0.01 
20 (hilliest) 5% 0.0% 0.01 
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Interaction terms were included to capture the relationship between distance and gradient, on 
the basis of evidence that the deterrent effect of a steeper slope was somewhat stronger for 
individuals travelling intermediate distances (Coefficient for gradient (change per 1% increase) -
0.32 (SD=0.001) for distances 0-4.9km; -0.35 (SD=0.003) for distances 5-9.9km; -0.37 (SD=0.005) 
for distances 10-14.9km; -0.30 (SD=0.008) for distances 15-19.9km; and -0.26 (SD=0.009) for 
distances 20-29.9km). 
 
The resulting equation for baseline propensity to cycle was: 
 

Equation 1A:   logit (pcycle) = -3.959 + (-0.5963 * distance) + (1.866 * distancesqrt) + (0.008050 * distancesq) + 
(-0.2710 * gradient) + (0.009394 * distance*gradient) + (-0.05135 * distancesqrt *gradient) 
  pcycle  = exp ([logit (pcycle)]) / (1 + (exp([logit(pcycle)]) 
 

where ‘pcycle’ is the proportion of cyclists expected; ‘distance’ is the fastest route distance in 
km, ‘distancesqrt’ and ‘distancesq’ are, respectively the square-root and square of distance; and 
‘gradient’ is the fastest-route gradient (centred on 0.97%).  Note that although this equation 
was derived at the individual level, it can be applied at the level of the OD pairs as distance and 
gradient are constant within OD pairs. Equation 1A showed good fit to the observed data with 
respect to both distance and hilliness (Figure 1).   
 
Figure 1: Observed versus predicted prevalence of cycling to work among 18,871,463 English and Welsh 
commuters travelling <30km to work, according to a) route distance and b) route gradient 

 
 

For commuters with no fixed workplace, we modelled propensity to cycle as a function of the 
average propensity to cycle among commuters living in the same MSOA and commuting <30km.  
The resulting equation for baseline propensity to cycle among those with no fixed workplace 
was: 
 

Equation 2A:   logit (pcycle) = -6.399 + (184.0 * meanpropensitysq) + (10.36 * meanpropensitysqrt) 
  pcycle  = exp (logit(pcycle)) / (1 + (exp(logit(pcycle)) 
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where ‘meanpropensitysq’ is the square of the mean propensity to cycle among type 1 and type 
2 OD pairs in the home MSOA in question, and ‘meanpropensitysqrt’ is the square root term.  
This resulted in the model fit shown in Figure 2.  
 
Figure 2: Observed versus predicted prevalence of cycling to work among 2,165,685 English and Welsh 
commuters with no fixed work place, according to the modelled propensity to cycle among commuters with a 
fixed workplace with route distance <30km 

  
 
Finally, we did not model baseline propensity to cycle among individuals living more than 30km 
from their place of work or commuting outside England or Wales.  Instead, given the 
considerable uncertainties about where the cycling reported by these individuals was taking 
place, we assumed no increase in cycling levels among these commuters in our scenarios.   
 
A1.3.2 Government Target Scenario 
 
The ‘Government Target’ scenario models a doubling of cycling nationally, corresponding to the 
proposed target in the UK government's draft Cycling Delivery Plan to double cycling between 
2013 to 2025 [3].   To model the total number of cyclists in the Government Target scenario 
propensity to cycle (‘pcycle’) in each OD pair was estimated using the equations set out in 
Section A1.3.1.  After multiplying this by the total number commuters in the OD pair this value 
was added to the recorded number of cyclists in the 2011 Census (see Table 3). 
 
This is scenario is illustrated by the following example. Take an OD pair of 200 commuters 
containing 7 cyclists in the 2011 Census, and with a modelled propensity to cycle of 5.2% (from 
Equation 1A ).  The total number of cyclists in the Government Target scenario would be 7 + 
(200 * 0.052) = 7 + 10.4 = 17.4.  Thus the Government Target scenario leads to a doubling of 
cyclists in England and Wales but not necessarily of each OD pair. Note the reported ‘baseline’ 
number of cyclists directly influences the total number of cyclists in the scenario (column B2 in 
Table 3), but does not influence the scenario increase in the number of cyclists (Column C).  
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Table 3: Summary of scenario generation rules 
Scenario Baseline no. 

cyclists (A) 
Initial estimation of scenario no. 

cyclists (B1) 
Additional processing of 
scenario no. cyclists (B2) 

Scenario 
increase in no. 

cyclists (C) 

Government 
Target 

Recorded no. in 
Census 2011, OD 
pair types 1-4. 

Column A +  (Baseline propensity to 
cycle [Equations 1A+2A]† in OD 
pair types 1-3 * no. commuters) 

 Cap Column B1 at 100%. Column B2 – 
Column A 

Go Dutch Recorded no. in 
Census 2011, OD 
pair types 1-4. 

‘Go Dutch’ propensity to cycle 
[Equations 1B+2B, with ‘dutch’=1 
and ‘ebike’=0] in OD pair types 1-3 
* no. commuters. 

 Set Column B1 as equal to 
Column A if B1 is less than A. 

Column B2 – 
Column A 

Ebikes Recorded no. in 
Census 2011, OD 
pair types 1-4. 

‘Ebikes’ propensity to cycle 
[Equations 1B+2B, with ‘dutch’=1 
and ‘ebike’=1] in OD pair types 1-3 
* no. commuters. 

 Set Column B1 as equal to 
Column A if B1 is less than A. 

Column B2 – 
Column A 

Gender 
Equity 

Recorded no. in 
Census 2011, OD 
pair types 1-4. 

Apply Equation 3 in OD pair types 
1-3. 

 Set Column B1 as equal to 
Column A if number of males 
in the OD pair is zero, or if B1 is 
less than A. 

Column B2 – 
Column A 

† Or, equivalently, using equations 1B + 2B in Section A1.3.3, ‘dutch’=0 and ‘ebike’=0 

 
 
A1.3.3 Go Dutch and Ebike scenarios 
 
The ‘Go Dutch’ scenario models the level of cycling expected if English and Welsh people cycled 
as much as people in Netherlands, taking into account differences in the distribution of hilliness 
and trip distances.  The ‘Ebike’ scenario is an extension of the Go Dutch scenario, but makes the 
further assumption that all cyclists in the Go Dutch scenario own an ebike.  For these scenarios, 
our approach was to start from the Equations estimating baseline propensity to cycle (Section 
A1.3.1) and add additional parameters. 
 
The Go Dutch scenario required us to model the increase in propensity to cycle that would be 
observed if English and Welsh commuters became as likely to cycle a given trip as Dutch 
commuters.  We estimated this additional parameter using trip-level analysis of the English and 
Welsh and Dutch National Travel Surveys, restricting the analysis to commute trips of less than 
30km (N = 264,912 trips among 35,390 adults in the 2008-2014 English and Welsh data; N = 
82,274 trips among 42,223 adults in the 2010-2014 Dutch data).  Trip-level analysis was used 
because the necessary individual-level data (e.g. usual main commute mode) was not available 
in the Dutch NTS.  In the English and Welsh NTS, however, the distance-decay curve at the trip 
level is very similar to the curve at the individual level, which gives confidence in our approach.  
 
In estimating the increased propensity to cycle among Dutch people, we included both a main 
effect term and an interaction term with distance (as a linear term).  We introduced the 
interaction term to reflect the fact that Dutch propensities to cycle exceed English and Welsh 
propensities by a greater amount for short distances (e.g. Dutch people are 5.5 times more 
likely to cycle a trip of 0-4.9km versus 3.7 times more likely to cycle a trip 10-14.9km).  As 
hilliness data was not available in the Dutch survey, we weighted the data so that the English 
and Welsh sample of commuters lived in areas with the same hilliness profile as the Dutch 
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commuters (see Box 1), to allow comparisons that were not affected by differences in average 
hilliness between England and Wales versus the Netherlands. In the logit model, based on 
347,186 trips among 77,613 English/Welsh and Dutch commuters, the coefficient for a main 
effect with Dutch (versus English) status was 2.523, while the interaction term between Dutch 
status and distances was -0.07626.   
 
The Ebike scenario builds on the Go Dutch scenario and models the further increase in 
propensity to cycle that would be observed if all Dutch cyclists acquired an ebike.  To generate 
the relevant parameters, we restricted our analysis to the Dutch NTS 2013-2014, the only years 
that measured ebikes as a separate mode.  We further restricted our analysis to the 26,807 
commute trips made by 13,693 adults who owned a bicycle.  We then duplicated the subset of 
trips made by ebike owners (2175 trips by 1087 individuals) and used logit regression to 
compare propensity to cycle between the population of duplicated ebike-owner trips (N = 2175) 
with the full population of all bicycle-owner trips (N = 26,807).  This analysis therefore takes into 
account the fact that some ebike owners are already present in the ‘Go Dutch’ scenario, and 
captures only the extra cycling that would occur if everyone with a traditional bicycle acquired 
an ebike.  
 
In estimating the extent to which this would increase propensity to cycle in the Ebike scenario, 
we focussed on interaction terms with distance (as a linear and squared term).  We did this to 
capture the fact that owning an ebike increases propensity to cycle more for long trips than for 
short trips (e.g. Dutch ebike owners are 1.1 times more likely than all Dutch bicycle owners to 
cycle a trip 0-4.9km versus 2.3 times more likely to cycle a trip 10-14.9km).  We adjusted for age 
and sex to take account of the fact that at present ebike owners in the Netherlands are more 
likely to be female than bicycle owners in general (61% vs. 48%) and are also older on average 
(mean age 54 years vs. 43 years).  The magnitude of the interaction term between ebike status 
and distance was 0.05710, while the magnitude of the interaction term between ebike status 
and distance squared was -0.0001087.  Because we did not have data on hilliness in the Dutch 
National Travel Survey we could not estimate the magnitude of any interaction between ebike 
ownership and hilliness in this dataset.  In addition, this might in any case not have been 
feasible as so little of the Netherlands contains hills.  
 
We therefore instead estimated the interaction term between ebike use and average route 
gradient using data from the Swiss National Household Travel Survey 2010. In this nationally-
represented household travel survey, a random sub-sample of participants were asked 
questions on the number of bicycles in their household in everyday use, and also on the number 
of ebikes in their household.  In this subsample, 21,327 trips of <30km were reported among 
5598 adult participants living in households that owned at least one bicycle in everyday use.  As 
when analysing the Dutch data, we duplicated the subset of trips made by individuals living in 
households owning at least one ebike (798 trips <30km by 107 adults).  Route distance on the 
road network, and the average route gradient, was estimated in ArcGIS based the on origin and 
destination co-ordinates of each stage, with route and gradient data drawn from 
www.swisstopo.admin.ch.  We fitted a regression model including the same terms as used in 
the Dutch data (age, gender, distance, distance-squared, and interaction terms between being 
in the ebike population and distance) plus terms for gradient and the interaction between being 
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in the ebike population and gradient.  The main effect term of gradient in this model was -
0.1313 (p<0.001) while the interaction term with ebikes was +0.08799 (p=0.16).  Thus there was 
a trend for an interaction effect in the expected direction, with the deterrent effect of gradient 
being considerably smaller for ebike users, but this was not significant. Because we believe an 
interaction of ebike ownership with hilliness is plausible, and the non-significant result likely 
reflects the small number of trips in the ebike population, we decided nevertheless decided to 
include this parameter in our model.  We did this by multiplying the main effect term for 
gradient in our model by the ratio of the Swiss interaction term / main effect term = +0.08799/-
0.1313 = -0.67.  We used this ratio rather than the absolute magnitude of the Swiss interaction 
term (+0.08799) because we believe the absolute magnitude of the Swiss term is plausibly 
diluted by the fact that ebike ownership is measured at the household-level not the individual 
level.  We did not estimate any three-way interaction parameters for ebike population by 
gradient by distance, as we felt that we had too little power for this to be meaningful.  We 
therefore decided only to apply this ratio of -0.67 to the main effect parameter for gradient, i.e. 
generating an ebike*gradient interaction term of -0.67 * -0.2710 = 0.1812.  The results this 
generates are almost identical to the results generated after applying a ratio of -0.5 to the 
gradient main effect term plus also to the interaction terms – i.e. our parameterisation is 
effectively equivalent to assuming that owning an ebike halves the effect of hilliness. 
 
Adding all these ‘Go Dutch’ and ‘Ebikes’ parameters together, we derived the following 
propensity to cycle equation: 
 
Equation 1B:    logit(pcycle) =  Equation 1A + Dutch parameters + Ebike parameters  
 
  logit(pcycle) =   = -3.959 + (-0.5963 * distance) + (1.866 * distancesqrt) + (0.008050 * 
distancesq) + (-0.2710 * gradient) + (0.009394 * distance*gradient) + (-0.05135 * distancesqrt *gradient) +  (2.523 * 
dutch) +  (-0.07626 * dutch * distance) + (0.05710 * ebike * distance) + (-0.0001087 * ebike * distancesq) + (0.1812 
* ebike * gradient). 

 
where ‘pcycle’ is the proportion of cyclists expected; ‘distance’ is the fastest route distance in 
km, ‘distancesqrt’ and ‘distancesq’ are, respectively the square-root and square of distance; 
‘gradient’ is the fastest-route gradient (centred on 0.97%); ‘Dutch’ is a binary variable that takes 
the value ‘0’ for the Government Target scenario and ‘1’ for the Go Dutch or the Ebike scenario; 
and ‘ebike’ is a binary variable that takes the  value ‘0’ for the Government Target and Go Dutch 
scenario and ‘1’ for the Ebike scenario.  Figure 3 shows the distribution of cycling propensity 
generated by Equation 1B, according to distance and hilliness. 
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Figure 3: Prevalence of cycling to work at baseline among English and Welsh commuters travelling <30km to 
work, and modelled prevalence of cycling to work in Go Dutch and Ebike scenarios, according to a) route 
distance and b) route gradient 

 
 
For commuters with no fixed workplace, we similarly started with Equation 2A, and extended 
this as follows. 
 
Equation 2B:   logit(pcycle) =  Equation 2A + mean Dutch parameters + mean Ebike parameters  
    = -6.399 + (184.0 * meanpropensitysq) + (10.36 * meanpropensitysqrt)  +   (dutch 
* meandutch ) + (ebike *  meanebike) 

 
where ‘meanpropensitysq’ is the square of the mean propensity to cycle among type 1 and type 
2 OD pairs in the home MSOA in question, and ‘meanpropensitysqrt’ is the square root term; 
‘meandutch’ is the average value of the Equation 1B Dutch parameters for commuters living in 
the same home MSOA; and ‘meanebike’ is the average value of the Equation 1B Ebike 
parameters for commuters living in the same home MSOA. 
 
A1.3.4 Gender Equity Scenario 
 
In the 2011 Census, women accounted for 48% of all English and Welsh commuters but only 
27% of all cycle commuters.  This gender disparity is seen across the country, with no local 
authority having a proportion of female cyclists greater than 50%.  The ‘Gender Equity’ scenario 
seeks to capture a situation in which this gender disparity was eliminated.  In this respect, it 
differs somewhat from the preceding three scenarios, as it does not use distance and hilliness 
data to model propensity to cycle.  Instead it assumes that male propensity to cycle remains 
unchanged – i.e. there is no change in the number of male cycle commuters – and that female 
propensity to cycle rises to match male propensity.  In other words, we sought to model a 
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situation in which, in any given OD pair, the proportion of females cycling rises to match the 
proportion of males cycling: 
 

 SNcyclistsf  /  BNcommutersf     =   BNcyclistsm   /  BNcommutersm  

 
where ‘SNcyclistsf’ is number of female cycle commuters in the gender equality scenario, 
‘BNcyclistsm’ is the recorded number of male cycle commuters at baseline, and ‘BNcommutersf’ 
and ‘BNcommutersm’ are the total numbers of females and males in the OD pair respectively.  
This allows estimation of the total number scenario number of cyclists (‘SNcyclists’) as follows: 
 

  SNcyclistsf      =   BNcommutersf  *  BNcyclistsm  / BNcommutersm 

  SNcyclists       =   BNcyclistsm    +   SNcyclistsf 

  SNcyclists       =   BNcyclistsm    +  (BNcommutersf  * BNcyclistsm  / BNcommutersm ) 

Equation 3:      SNcyclists       =   BNcyclistsm    *  ( 1  +  (BNcommutersf / BNcommutersm) ) 

 
To illustrate how this method works in practice, imagine an OD pair in which 50 from a total of 
500 people commute by cycle, 35 males (BNcyclistsm = 35) and 15 females (BNcyclistsm = 15). 300 of 
the total trips in the OD pair are made by males (BNcommutersm =200) and 200 by females 
(BNcommutersf =200). Applying Equation 3: 
 

 SNcyclists    =   BNcyclistsm    *  ( 1  +  (BNcommutersf / BNcommutersm) ) 

 SNcyclists    =   35  *  ( 1 +  (200 / 300) ) 
         =   58.3 

All of these extra 8.3 cyclists are female, giving a new total of 15 + 8.3 = 23.3 female cyclists (and 
still 35 male cyclists). Gender equality in cycling has been reached, such that 11.7% of commute 
trips are made by cycling among both men (35/300) and women (23.3 / 200).  Equation 3 was 
applied to commuters with ‘no fixed workplace’ in the same way, and as in other scenarios we 
assumed no change among commuters travelling >30km or outside England and Wales. 
 
A1.4: Modelling scenario mode shift in walking and car driving 
 
To estimate the health impacts of our scenarios, we needed to estimate the number of new 
cyclists who had previously commuted on foot.  Similarly, in order to estimate the carbon 
impacts of our scenarios, we needed to estimate the number of new cyclists who had previously 
commuted as car drivers (note that we specifically focus on car drivers, not car passengers, as 
the standard practice in estimating transport CO2 emissions is to attribute all emissions to the 
car driver, to avoid double-counting). We assumed that within any given OD pair commuters 
were equally likely to shift to cycling from any baseline mode, and therefore the mode shift was 
proportional to mode share at baseline.  For example, take an OD pair containing 220 
commuters at baseline, of whom 20 cycle, 80 walk, 50 are car drivers and 70 use other modes of 
transport. If the ‘Government Target’ scenario number of cyclists rose to 50 in this OD pair, this 
would mean that the number of non-cyclists decreased to 170, giving a ratio of change among 
non-cyclists of 170 / 200 = 0.85.  We assume this 0.85 applies to all modes, and therefore the 
number of pedestrians in the scenario 80 * 0.85 = 68; the number of car drivers in the scenario 
is 50 *0.85 = 42.5; and the number of commuters using other modes in the scenario is 70 * 0.85 
= 59.5. 
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For the purposes of estimating health and carbon impacts of the current level of cycling relative 
to a ‘no cycling’ counterfactual, we made the same assumption.  For example, again take the OD 
pair containing 220 commuters at baseline, of whom 20 cycle, 80 walk, 50 are car drivers and 70 
use other modes of transport. In a ‘no cyclists’ counterfactual, the number of non-cyclists would 
increase to 220, giving a ratio of change among non-cyclists of 220 / 200 = 1.1.  Thus in the ‘no 
cyclists’ counterfactual, the number of pedestrians would be 80 * 1.1 = 88, and so on.  When 
estimating mode split in the ‘no cyclists’ counterfactual in the 5057 of OD pairs that at baseline 
consisted entirely of cyclists, we assumed a mode split of 31% walking, 35% car drivers and 34% 
other modes.  These percentages correspond to the observed mode split among the 974 OD 
pairs in which 50-99% of individuals cycled in the 2011 Census. 
 
A1.5: Estimating the physical activity health benefits  
 
We used the World Health Organisation’s Health Economic Assessment Tool (HEAT, 
http://www.heatwalkingcycling.org/) to estimate the number of deaths avoided due to 
increased physical activity [4].  
  
A1.5.1: Deaths avoided due to increased cycling 
 
In line with the HEAT guidelines, our first step in estimating health benefits was to calculate the 
average weekly duration of cycling conducted by cycle commuters in a given OD pair.  This 
average duration was calculated as equal to: 
 
Weekly cycling duration among cycle commuters in a given OD pair 
  = (cycling commute distance * mean cycle commute trips per cyclist per week in a typical week) / mean 
cycling speed 

 
Commute distance, commute trips per cycle commuter week in a typical week and cycling speed 
were estimated as described in Table 4 (parameters A, E and F).  In the Go Dutch and Ebikes 
scenarios, we additionally drew on an estimate of mean Ebike cycling speed (parameter H) and 
multiplied the weekly duration of cycling by an activity intensity-related distance reduction 
factor for ebikes (parameter I).  We applied these speed and activity-intensity parameters to the 
proportion of cycle trips in each OD pair that was estimated to be made by ebike (Table 4, 
parameters J and K).  We used these adjustment factors to take account of the fact that cycling 
by ebikes is a) faster and b) less energy intensive than cycling on a normal bicycle, and so one 
needs to travel further to get the same physical activity benefits.  For scenarios involving ebikes, 
our ‘weekly cycling duration’ values therefore do not capture the actual number of minutes 
spent cycling but instead capture a weekly duration of pedal cycling that would be expected to 
yield the same physical activity benefits. 
 
After we had estimated the weekly duration of cycling among cycle commuters in each OD pair, 
we followed standard HEAT procedure and calculated a mortality protection effect for cyclists in 
each OD pair as being equal to: 
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Mortality protection for cycle commuters in a given OD pair 
 = (1-mortality reduction for reference cycling duration)*(weekly cycling duration / reference cycling 
duration) 

 
The mortality reduction factor for cycling, and the reference duration of cycling are both fixed 
input parameters specified by HEAT (Table 4, parameters L and M).  Note that the value of the 
mortality protection factor for cycling is capped at as a maximum of 0.45 for HEAT 2014.  This 
cap is implemented in HEAT to account for the fact that additional physical activity confers 
diminishing health benefits if starting from a higher baseline activity level and to avoid 
implausibly large reductions in mortality risk from large increases in mortality.  The estimated 
mortality protection factor was then used to estimate the number of deaths avoided per year as 
follows: 
 
No. deaths avoided per year due to cycle commuting in each OD pair 
 = change in no. cycle commuters * annual mortality rate of cycle commuters * mortality protection for 
cycle commuters 

 
The input parameters on the annual mortality rates of cyclists are summarised in Table 4 
(parameters P, Q, R).  For these, we first calculated age- and sex-specific mortality rates for each 
local authority in England and Wales using data published by the Office for National Statistics on 
deaths in 2014 [5] and the 2014 mid-year population [6].  We did so for all ages from 16-74 in 
five-year age bands (16-19, 20-24, 25-29 and so on up to 70-74).  We then weighted these 
mortality rates by the age- and sex-profile of the relevant population of cyclists, i.e. to the 
population of cyclists whose numbers were changing in the scenario in question.  When 
estimating the health impacts of current cycling levels against a ‘no cycling’ counterfactual, the 
relevant population was those cyclists recorded in the 2011 Census.  The same was true for the 
Government Target scenario, as we assumed that the age- and sex- profile of new cyclists in this 
scenario would match that of existing cyclists in the 2011 Census.  For the Gender Equity 
scenario we assumed that all new cyclists were female but with the age profile of existing 
cyclists in the 2011 Census.  Finally, for the Go Dutch and Ebikes scenarios we assumed that the 
profile of cyclists matched those currently observed among cycle commuters in the 
Netherlands.   
 
When seeking to compare the number of deaths avoided at baseline (in comparison to a ‘no 
cycling’ counterfactual), the change in the number of cycle commuters was equal to the 
recorded number of cyclists in the 2011 census.  When estimating the number of deaths 
additionally avoided in the scenario in question as compared to baseline, the change in the 
number of cycle commuters was equal to the scenario increase in the number of cyclists 
(Column C in Table 3).   When estimating the number of deaths avoided in a scenario versus a 
‘no cycling’ counterfactual, the number of deaths avoided at baseline was added to the number 
of deaths additionally avoided in the scenario in question. 
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A1.5.2: Deaths previously avoided due to former walking among former pedestrians shifted to 
cycling 
 
In calculating the total mortality impacts of a given scenario, one needs to offset the physical 
activity gained through increased cycling against the physical activity lost through any decrease 
in walking, since some new cyclists will formerly have walked to work.  Among these former 
pedestrians, we calculated the weekly duration of walking that was displaced by cycling by 
substituting former walking distance and walking speed (Table 4, parameters B and G) for 
cycling speed, i.e.: 
 
Displaced weekly walking duration among former pedestrians in a given OD pair 
               = (former walking commute distance * mean cycle commute trips per cyclist per week) / mean walking 
speed 

 
We likewise substituted in the equivalent walking parameters for mortality reduction and 
reference duration (parameters N and O) to estimate the former mortality protection among 
former pedestrians as: 
 
Former mortality protection for former pedestrian commuters in a given OD pair 
 = (1 - mortality reduction for reference walking duration)*(displaced weekly duration of walking  

  / reference walking duration) 

 
Note that the value of the mortality protection factor for walking is capped at as a maximum of 
0.30 for HEAT 2014.  We then estimated the number of deaths formerly avoided due to walking 
among former pedestrians as being equal to: 
 
No. deaths formerly avoided due to walking among former pedestrians in each OD pair 
 = Change in no. pedestrians * annual mortality rate of cycle commuters * mortality protection for former 
pedestrians 

 
with the change in the number of pedestrians (parameter T) being estimated using the mode 
shift calculations described in Section A1.4. 
 
A1.5.3: Net change in deaths, and associated monetary value 
 
Putting together our calculating relating to new cyclists and former pedestrians, the net effect 
on number of deaths was: 
 
Net change in no. deaths avoided in each OD pair = 
 No. additional deaths due to reduced walking - No. deaths avoided due to cycle commuting 

 
Note that this approach means that in some OD pairs the net change in the number of deaths 
avoided was a positive number, i.e. additional deaths were incurred.  This could happen if the 
majority of new cyclists had formerly walked, as this may result in a decrease in the total 
amount of physical activity incurred by the new cyclists.   
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Finally, the monetary value of the mortality impact was calculated by multiplying drawing on 
the standard ‘value of a statistical life’ used by the Department for Transport (Table 4, 
parameter V), as follows: 
 
Monetary value of the mortality impact in each OD pair =  
 Net change in no. deaths *  -1  * value of a statistical life 

 
Table 4: Input parameters for estimation of health impacts using HEAT, and for estimation of carbon impacts 

ID Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter 
value 

Parameter source Comment 

A Cycling commute 
distance  

Both Variable by 
OD pair 

CycleStreets fastest 
route or route 
average - see final 
column of Table 1. 

 

B Former walking 
commute 
distance 

Health Variable by 
OD pair 

Assumed equal to 
cycling commute 
distance (Input A). 

We assumed former pedestrians previously used 
the same route, rather than walking a shorter 
distance to reach the same destination. 

C Former driving 
commute 
distance 

Carbon Variable by 
OD pair 

Assumed equal to 
cycling commute 
distance (Input A). 

We assumed former car drivers previously used 
the same route, rather than driving a longer 
distance to reach the same destination. 

D Mean cycle 
commute trips 
per cyclist per 
week 

Carbon 5.24 English and Welsh 
NTS, 2008-2014. 

This is the average number of cycle commute 
trips reported per week among people who say 
cycling is their usual main mode.  It includes the 
27% of NTS respondents who said cycling was 
their usual main commute mode, but reported 
no cycle commute trips in the past week. 

E Mean cycle 
commute trips 
per cyclist per 
week in a typical 
week 

Health 7.17 English and Welsh 
NTS, 2008-2014. 

This is the number of cycle commute trips 
reported per week among people who say 
cycling is their usual main mode, and who 
reported at least one cycle commute trip in the 
past week.  The latter restriction is in place 
because the HEAT input data on mortality risk 
reduction is largely based on studies asking 
about a ‘typical week’ – which we assume will 
include at least one commute trip for those who 
say they use cycling as their usual main mode of 
travel to work. 

F Mean cycling 
speed 

Health 14 km/hour HEAT guidance 2014 
[4, page 33]. 

Consistent with NTS 2008-2014, in which the 
mean speed was 13.7 km/hr for commute cycle 
trips among those for whom cycling is usual 
main mode and excluding trips with implausible 
speeds (defined as <2km/hr or >25km/hr). 

G Mean walking 
speed 

Health 4.8 
km/hour 

HEAT guidance 2014 
[4, page 16]. 

Consistent with NTS 2008-2014, in which the 
mean speed was 4.7 km/hr for commute walk 
trips among those for whom walking is usual 
main mode and excluding trips with implausible 
speeds (defined as >10km/hr). 
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ID Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter 
value 

Parameter source Comment 

H Mean ebike 
speed 

Health 15.8 
km/hour 

Dutch NTS, 2013-
2014. 

In the Dutch NTS 2013-2014, mean cycling speed 
is 15.2km/hr for bicycle commute trips and 17.2 
km/hr for ebike commute trips, i.e. the ebike 
speed was 17.2/15.2=1.13 times faster.  We 
applied this to the HEAT 2014 assumed cycling 
speed of 14km/hour to get 14*1.13=15.8 
km/hour. 

I Activity intensity-
related distance 
reduction factor 
for ebikes 

Health 0.648 Published literature 
on physical activity 
intensity [7, 8].  

Physical activity intensity can be measured in  
Marginal Metabolic Equivalent Tasks (MMETs), 
namely the value MET rate minus 1. The 
estimated MMET value for ebiking is 3.5 [7], 
while for cycling for transport on a pedal bike it 
is 5.4 [8].  We scaled down the duration of 
ebiking by 3.5/5.4=0.648 in order to generate a 
duration value that captured the amount of 
physical activity benefit that would have been 
incurred by pedal bicycling. 
 
This approach of scaling by MMETs is compatible 
with the HEAT numbers because the current 
HEAT walking and cycling parameters equate to 
a very similar mortality benefit per MMET using 
our MMET rates.  Specifically, HEAT assumes 
that cycling 100 minutes per week (input M) 
gives a relative risk reduction of 1-0.9 = 0.10 
(input L).  Since the MMET value of cycling is 5.4 
[8], this indicates that 100*5.4=540 MMETS per 
week gives a relative risk reduction of 0.1, or 54 
MMETS per week for a relative risk reduction of 
1%.  HEAT also assumes that walking 168 
minutes per week (input O) gives a relative risk 
reduction of 1=0.89=0.11 (input N).  Since the 
MMET value of walking is 3.6 [8], this indicates 
that 168*3.6=604.8 MMETS per week gives a 
relative risk reduction of 0.11, or 55.0 MMETS 
for a relative risk reduction of 1%.   

J Percent cycle 
trips made by 
ebikes in Go 
Dutch scenario 

Health Variable by 
OD pair, 
according 
to route 
distance 

Dutch NTS, 2013-
2014. 

In the Go Dutch scenario, we assumed the 
percent of trips made by ebike corresponded to 
the recorded percentages among all cycle 
commute trips in the Dutch NTS 2013-2014.  The 
values were 6% cycle trips by ebikes for trips 
<5km, 11% for trips 5-9.9km, 17% 10-19.9km, 
23% for trips 20-30km.  

K Percent cycle 
trips made by 
ebikes in Ebikes 
scenario 

Health Variable by 
OD pair, 
according 
to route 
distance 

Dutch NTS, 2013-
2014. 

In the Ebikes scenario, we assumed the percent 
of trips made by ebike corresponded to the 
recorded percentages among cycle commute 
trips made by ebike owners in the Dutch NTS 
2013-2014.  The values were 71% cycle trips by 
ebikes for trips <5km, 92% for trips 5-9.9km, 
92% 10-19.9km, 100% for trips 20-30km.  
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ID Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter 
value 

Parameter source Comment 

L Mortality 
reduction for 
reference cycling 

Health 0.9 HEAT guidance 2014 
[4, page 14]. 

Reduced relative risk = 1-0.9 = 0.1 for the 
reference duration of cycling.  After scaling for 
the actual duration of cycling this reduced 
relative risk was capped at 0.45 

M Reference cycling 
duration  

Health 100 
min/week 

HEAT guidance 2014 
[4, page 14]. 

 

N Mortality 
reduction for 
reference 
walking duration 

Health 0.89 HEAT guidance 2014 
[4, page 14]. 

Reduced relative risk = 1-0.89 = 0.11 for the 
reference duration of walking.  After scaling for 
the actual duration of walking this reduced 
relative risk was capped at 0.30 

O Reference 
walking duration 

Health 168 
min/week 

HEAT guidance 2014 
[4, page 14]. 

 

P Background 
annual mortality 
rate for existing 
cyclists at 
baseline, and for 
new cyclists in 
Government 
Target scenario 

Health Variable by 
OD pair, 
according 
to local 
authority 

Mortality rate for 16-
74 year olds in 
England and Wales in 
2014, weighting by 
the age/sex profile of 
current commuter 
cyclists. 

For inputs P to R, we calculated mortality rates 
using data published by the Office for National 
Statistics on deaths [5] and the mid-year 
population [6] for each local authority in England 
in 2014.  
 
For each local authority, we took a) age/sex-
specific 2014 mortality rates and b) the age/sex 
profile of cycle commuters in the 2011 census.  
We combined these to estimate the background 
mortality rate for existing cyclists, and for new 
cyclists in the Government Target scenario. 

Q Background 
annual mortality 
rate, Go Dutch 
and Ebikes 
scenarios 

Health Variable by 
OD pair, 
according 
to local 
authority 

Mortality rate for 16-
74 year olds in 
England and Wales in 
2014, weighting by 
the age/sex profile of 
Dutch commuters 
cyclists. 

For each local authority, we took a) age/sex-
specific 2014 mortality rates and b) the age/sex 
profile of cycle commuters in the Dutch NTS 
2010-2014.  We combined these to estimate the 
background mortality rate for new cyclists in the 
Go Dutch and Ebike scenarios. 

R Background 
annual mortality 
rate for new 
cyclists, Gender 
equity scenario 

Health Variable by 
OD pair, 
according 
to local 
authority 

Mortality rate for 16-
74 year old women in 
England and Wales in 
2014, weighting by 
the age profile of 
current female 
commuter cyclists. 

For females in each local authority, we took a) 
age-specific 2014 mortality rates and b) the age 
profile of female cycle commuters in the 2011 
census.  We combined these to estimate the 
background mortality rate for new cyclists in the 
Gender Equity scenario. 

S Change in no. 
cycle commuters 

Both Variable by 
OD pair 
and by 
scenario 

At baseline, equal to 
Census 2011. 
In scenarios, equal to 
the scenario-increase 
in cycling, see Table 3 

 

T Change in no. 
former 
pedestrians 

Health Variable by 
OD pair 
and by 
scenario 

Mode shift estimation 
described in Section 
2.4 

 

U Change in no. 
former car 
drivers 

Carbon Variable by 
OD pair 
and by 
scenario 

Mode shift estimation 
described in Section 
2.4 

Note that we specifically focus on car drivers, 
not car passengers, as the standard practice in 
estimating transport CO2 emissions is to 
attribute all emissions to the car driver, to avoid 
double-counting 
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ID Parameter 
description 

Used for 
health or 
carbon 
or both? 

Parameter 
value 

Parameter source Comment 

V Value of a 
statistical life 

Health £1,855,315 DfT standard value of 
a statistical life, in 
2014 money [10]. 

Calculated in 2014 money, drawing on published 
figures by the DfT’s ‘WebTAG’[10]. 
 
Note that to be consistent with other DfT ‘value 
of a statistical life’ calculations we used this 
same parameter in relation to HEAT 2014, even 
though the HEAT 2014 tool uses the a 
considerably higher value of £3,229,114 [11] 

W CO2-equivalent 
emissions per km 

Carbon 0.000186 DEFRA 2016 [12]. This is the 2015 value for an ‘average’ car of 
‘unknown’ size in the UK government’s carbon 
conversion factors [12]. 

CO2= carbon dioxide; DEFRA=Department for the Environment, Food and Rural Affairs; DfT=Department for 
Transport; HEAT=Health Economic Assessment Tool; MET=Metabolic Equivalent Task; NTS=National Travel Survey; 
OD pair =origin-destination pair 

 
 
A1.6: Estimating reductions in transport carbon dioxide emissions from car driving 
 
When comparing each scenario to baseline, we estimated the reduction in transport carbon 
dioxide (CO2) emissions as follows: 
 
Change in CO2-equivalent emissions (in kg) per year 
 = Change in no. car drivers * former distance travelled by former car drivers * mean cycle commute trips 
per cyclist per week * 52.2 * CO2-equivalent emissions (in kg) per kilometre 

 
The change in the number of car drivers was estimated using the mode shift calculations 
described in Section A1.4 (Table 4, parameter U).  Their average former distance was assumed 
to be equal to the new ‘fastest route’ distance travelled by the cycle commuters (parameter C).  
The mean cycle commute trips per cyclist per week was estimated to be 5.24 (parameter D), 
meaning that the mean cycle commute trips per year was 5.24 * 52.2 = 273.5.  The average CO2-
equivalent emission per kilometre car driving was taken as 0.186kg, which is the 2015 value for 
an ‘average’ car of ‘unknown’ size in the UK government’s carbon conversion factors [12] (Table 
4, parameter U). 
 
A1.7: Aggregating results to the level of bidirectional OD pairs and areas 
 
Sections A1.2 to A1.6 all involve estimating variables for directional OD pairs.  To aggregate 
these values to correspond to bidirectional OD pairs, we added up the values in both directions 
between a given pair of locations (e.g. adding the values for the A-to-B OD pair with the values 
of the B-to-A OD pair).  These bidirectional totals are what we present in our visualisation tool.  
In a similar way, we also aggregated the values for directional OD pairs to the area level.  We 
initially did this by summing our outcome variables across all OD pairs with the same home 
MSOA.  This gave us MSOA-level estimates of the total number of cycle, foot and car commuters 
living in each MSOA in each scenario, plus the total change in mortality and in CO2 emissions 
resulting from behaviour change among residents of that MSOA.  These MSOA-level values were 



19 

 

then further aggregated to the local-authority, regional or national level, to provide estimates 
for a range of geographies.   
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