
Abstract: This paper used an implementation of the land-use model 
SILO in Austin, Texas, over a 27-year period with an aim to understand 
the impacts of the full adoption of self-driving vehicles on the region’s 
residential land use. SILO was integrated with MATSim for the Austin 
region. Land-use and travel results were generated for a business-as-
usual case (BAU) of 0% self-driving or “autonomous” vehicles (AVs) 
over the model timeframe versus a scenario in which households’ value 
of travel time savings (VTTS) was reduced by 50% to reflect the travel-
burden reductions of no longer having to drive. A third scenario was 
also compared and examined against BAU to understand the impacts of 
rising vehicle occupancy (VO) and/or higher roadway capacities due to 
dynamic ride-sharing (DRS) options in shared AV (SAV) fleets. Results 
suggested an 8.1% increase in average work-trip times when VTTS fell 
by 50% and VO remained unaffected (the 100% AV scenario) and a 
33.3% increase in the number of households with “extreme work-trips” 
(over 1 hour, each way) in the final model year (versus BAU of 0% AVs). 
When VO was raised to 2.0 and VTTS fell instead by 25% (the “Hi-
DRS” SAV scenario), average work-trip times increased by 3.5% and the 
number of households with “extreme work-trips” increased by 16.4% in 
the final model year (versus BAU of 0% AVs). The model also predicted 
5.3% fewer households and 19.1% more available, developable land in 
the city of Austin in the 100% AV scenario in the final model year 
relative to the BAU scenario’s final year, with 5.6% more households 
and 10.2% less developable land outside the city. In addition, the model 
results predicted 5.6% fewer households and 62.9% more available 
developable land in the city of Austin in the Hi-DRS SAV scenario in 
the final model year relative to the BAU scenario’s final year, with 6.2% 
more households and 9.9% less developable land outside the city.
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1 Introduction and motivation

American cities have formed and transformed contemporaneously with transportation technologies. 
The suburbanization, or urban sprawl, of U.S. cities can be mainly attributed to cars and highway infra-
structure. Muller (2017) has shown that in American cities, through time, the built-up urban area has 
maintained a rather constant 45-minute time-radius from the center. Each transportation technology 
has made travel easier and has therefore extended the distance of this time-radius, allowing for cheaper 
suburban residential areas to be unlocked. From walking horsecars in the nineteenth century to electric 
streetcars in the early twentieth century to the mainstream adoption of automobiles and the build-out 
of freeways in the mid-twentieth century, major expansions of cities have been a by-product (Muller, 
2017).

A new era of urban centralization is beginning as planners find that building more freeways is either 
not a solution or not an option (Muller, 2017). Transportation technologies are also changing faster than 
ever before (Dowling & Morgan, 2019). In contrast to this era of centralization, self-driving “autono-
mous” vehicle (AV) technology is on the horizon, which is certain to alter cities and regions significantly 
(Muller, 2017). Transportation economists remark that travelers would prefer to pay less for their travel 
and, if they can get it for less, they will tend to travel more. These new transportation technologies, 
namely AVs, have the opportunity to reduce the time cost of travel compared to other travel modes 
because they remove the burden of driving, allowing productive time to be spent in one’s vehicle. Thus, 
any change in transportation technology that affects travel costs will also impact land use, and changes 
in land use impacts travel patterns, creating a cycle of change (Dowling & Morgan, 2019). For example, 
it has been shown that households will tend to move to more distant regions when they have access to 
AVs, which has impacts on travel and land-use behavior (Huang, Kockelman, & Quarles, 2019).

The advent of AVs makes for an interesting new transportation era because of the relatively long 
lead time to plan and prepare for the technology before it is expected to become widely implemented. 
Note that the Society of Automotive Engineers defines five levels of automation. These levels range from 
minor driver assistance features such as cruise control at Level 1, to fully self-driving vehicles at Level 5 
(SAE International, 2018). In this study, when the term AV is used, the reference is to Level 4, where 
the vehicle is fully self-driving, but it must remain on the road infrastructure. Driverless testing on public 
roads has begun in many U.S. states and many nations for major players such as Google’s Waymo and 
GM Cruise Automation (National Conference of State Legislatures, 2019). If these major players are 
able to reduce travel costs significantly below $1/mile, there is expected to be a major adoption of AVs 
by the greater public. A recent stated-preference survey indicated that Americans’ average  willingness 
to pay for use of SAVs is $0.44/mile (Quarles & Kockelman, 2019). In contrast, the average cost of 
sedan ownership in the U.S. is $0.59/mile (Edmonds, 2017). This adoption would significantly impact 
travelers’ value of travel time savings (VTTS). This is expected to increase the distance many are willing 
to travel, as well as have other land-use impacts, such as a decreased need for parking facilities (Dowling 
& Morgan, 2019). Engineers,  planners,  and  policymakers alike can use this time to ensure a successful 
implementation by making use of models to understand land use, energy, and transportation implica-
tions, allowing them to assess the role of policy and its impacts on these attributes.

The interaction between transportation and land-use patterns are important and reinforcing. Ac-
cording to Hawkins and Habib (2018), the use of integrated transport and land-use models (ITLUMs) 
is crucial to understanding and evaluating the impacts of the implementation of AVs on transportation 
demand, transportation supply, and residential development. Most studies expect AVs to increase ur-
ban sprawl because of more efficient driving and lower VTTS associated with removing the burden of 
driving. Modeling these impacts for the six-county Austin, Texas, metropolitan region (hereby referred 
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to as simply the Austin Metro) is the focus of this section, but it is important to note that there are 
conflicting expectations on the relationship that AVs will have for urban land use. Some have claimed 
that shared AV fleets (SAVs) have the possibility to re-urbanize cities because parking will no longer be 
a necessary dwelling consideration, making more central, downtown areas more desirable (Hawkins & 
Habib, 2018). A limitation of the present study is that these effects are not considered. Interestingly, one 
recent study showed that 10% of survey recipients who were likely to move in the next few years said 
the availability of AVs and SAVs would mean that they would be likely to move further from the city 
center and 15% of survey recipients indicated that the availability of AVs and SAVs would mean that 
they would likely move closer to the city center (Quarles & Kockelman, 2019). So, this study limitation 
is a significant one.

More recent ITLUMs have focused on agent-based microsimulation modeling techniques, 
in contrast to traditional gravity models or econometric models. SILO (Simple Integrated Land-
Use Orchestrator) was the chosen microsimulation land-use model (LUM) because of its relative 
simplicity (compared to other microsimulation LUMs), leading to reasonably short run times, lowered 
data requirements, and its ease of integration with the well-established agent-based microsimulation 
transportation model MATSim (Hawkins & Habib, 2018).

2 Literature review

Transportation and land-use development are in a constant feedback cycle; each informs the other and 
when one alters, the other adjusts, and vice versa. Because of this relationship, ITLUMs improve the rea-
sonability of model results compared to stand-alone transport models. ITLUMs are not new, but there 
has been a new wave of interest in them because of upcoming transportation trends and technologies, 
such as AVs, that are expected to significantly impact land use (Dowling & Morgan, 2019). The most 
common concern in using an ITLUM is the intensity of data needs, which is one reason why SILO was 
chosen for this study. SILO integrated with MATSim is less data-intensive relative to similar ITLUMs 
(Moeckel, 2018a).

SILO is a simplified microsimulation model with a focus on time and budget constraints as op-
posed to utility maximization (Moeckel, 2019a). There is a trend towards microsimulation in LUMs 
and in travel demand models (TDMs). Benefits of microsimulation include that it is more flexible to a 
higher level of population detail, and the model is easier to explain because agents are modeled explicitly, 
and true decision-making is modeled more closely. These benefits come with the limitations of longer 
run times as well as variations in the same model runs because of the stochastic nature of the model 
(Moeckel, 2018a). SILO is simplified in its methodology, which decreases its data requirements and its 
run times. In contrast to many LUMs, SILO does not assume agents are always fully knowledgeable in 
making decisions (for example, they will not know information on all of the vacant dwellings in the re-
gion when looking to move). Rather than maximizing utility, agents look to satisfy requirements, within 
time and money constraints, that may be biased or based in habit. Further, SILO has also been inte-
grated with MATSim in previous studies, making it a good choice of ITLUM for our needs (Hawkins 
& Habib, 2018).

The integration of SILO and MATSim was first published in 2016 for the Maryland study region. 
Because SILO and MATSim are both written in Java, integration was reported to be relatively seamless 
(Ziemke, Nagel, & Moeckel, 2016). In addition, both models are microsimulation agent-based models, 
so a fully agent-oriented ITLUM was proven and reasonable results were found through this methodol-
ogy. Congestion levels and patterns were simulated well, even though MATSim was created based on 
OpenStreetMaps (OSM) data that were never altered or calibrated (Ziemke et al., 2016).
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This study looks to identify land-use impacts of AVs using the ITLUM of SILO and MATSim, 
and so similar research in this realm was reviewed. Of note is a study on congestion and accessibility 
impacts of AVs by Cohen and Cavoli (2019). They looked at traffic flow and accessibility implications 
for a range of government intervention (or non-intervention) scenarios. Using surveys and extensive 
literature reviews, the authors supported what many had hypothesized: that if the free market is left 
alone to deal with the adoption of AVs, we are likely to see a scenario that does not maximize social 
welfare. The authors looked at various categories of policy intervention, including land-use policies such 
as zoning, regulation policies such as banning the empty running of AVs, and infrastructure policies 
such as adding walking or biking paths. They looked at nineteen interventions and determined the cor-
responding implications for traffic flow and accessibility, but they did not reach a final conclusion on 
what combination of government interventions serve the best chance at mitigating negative impacts of 
AV penetration (Cohen & Cavoli, 2019).

It is also important to review literature that looks at the land use-transport relationship as it pertains 
to AVs. A paper by Soteropoulos, Berger, and Ciari (2019) reviewed modeling studies that looked at 
impacts of AVs on travel behavior and land use. The authors looked at studies between 2013 and 2018 
that contained keywords of AVs, transport, land use, and modeling. Most of the studies cited examined 
travel behavior implications of AVs, though several examined land-use impacts, mainly through the use 
of ITLUMs. Studies varied in whether they investigated full replacement of vehicles or a small share of 
vehicle trips that were modeled in an AV. A common assumption is the reduction of VTTS in AVs due 
to an increased productivity or comfort. Increases in roadway capacity due to AVs is another recurring 
assumption made in these models. For the most part, studies used vehicle miles traveled (VMT) or 
vehicle hours traveled (VHT) as indicators for travel changes, and various land use impacts were ana-
lyzed, from parking needs to location choices of households and employment. Studies mostly found an 
increase in VMT, while VHT impacts vary based on study assumptions. In looking at the effects of AVs 
on households and employment, studies mostly predict that there will be an increase of population in 
well-connected outer regions. This is especially the case in studies with high discounts of VTTS or large 
increases in road capacity. It is noted that studies that examine land-use impacts of AVs generally have 
low spatial detail, tending to only distinguish between urban and suburban areas, for example. This is 
the point that this study is meant to build on, to place more weight and attention to the more compli-
cated land-use patterns that could not be interrogated in previous models (Soteropoulos et al., 2019).

3 Model framework

There are three components of the modeling framework: (1) the creation of the synthetic population for 
the Austin Metro, (2) the LUM SILO, and (3) the transport model MATSim. The synthetic population 
is created before any model run begins and is updated after each model year that SILO completes. Run-
ning an LUM and a TDM each year and updating each is ideal but rarely achieved. Because of long run-
times, the TDM or LUM or both are often run for selected years only (Moeckel, 2018b). In this case, 
SILO is run every year and MATSim is run every tenth model year. Although running MATSim every 
tenth year is infrequent, it was found that this struck a balance between model runtime and the accuracy 
of model output. It is also supported in the literature that many ITLUMs run the transport model every 
ten years, including many PECAS implementations. As a specific example, the San Francisco Bay Area 
runs their TDM every ten years in their ITLUM implementation for the region (Moeckel, 2018b).
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4 Synthetic population

Before any model runs begin, the Census Public Use Micro Sample (PUMS) dataset is used to create a 
synthetic population for the base year, 2013 (U.S. Census Bureau, 2018). The SILO synthetic popula-
tion generator, using information from the PUMS, creates a simplified microscopic representation of 
the actual Austin Metro population. It is simplified in that it only includes attributes deemed important 
to land-use modeling and it is microscopic in that every person and household is represented individu-
ally. It is not identical to the actual population of Austin, but it matches various statistical distributions 
of the actual population, and so it is close enough for modeling purposes (Moeckel, 2015).

The U.S. version of SILO’s synthetic population generator uses the 5% PUMS sample, which 
provides less household characteristic details in exchange for more spatial detail, as compared to the 
1% PUMS. The spatial resolution of the 5% PUMS are called PUMAs (Public Use Microdata Areas). 
Besides household details, PUMS also provides information of each person in each household and the 
dwellings that the households live in. PUMS includes an expansion factor which describes how many 
households of the true population each PUMS record represents. These expansion factors are used in 
SILO’s synthetic population generator and they were calculated specifically to match the actual popula-
tion of each PUMA (Moeckel, 2018a).

By expanding household records, we also expand synthetic persons and dwellings at the same time. 
Once expanded, the total number of persons and households matches the actual population of the 
region. In addition, the PUMS data includes information on vacant dwellings, and so this expansion 
should also represent a complete set of dwellings in the region, split into five different dwelling catego-
ries: single family detached (SFD), single family attached (SFA), multi-family dwellings with up to four 
families (MF234), multi-family dwellings with five or more families (MF5plus), and mobile homes 
(MHs). The PUMS data over-represented vacant dwellings by a large margin, perhaps over-representing 
unoccupied households when they did not respond to the surveys. The PUMS data estimated vacancy 
rates to be 9.8% which is much higher than most estimates that put vacancy rates around 5% (Depart-
ment of Numbers, 2017). Because of this, vacant household were randomly removed from the synthetic 
population until a vacancy rate of 5% was achieved.

PUMS data give dwelling locations at the PUMA level. Next, dwellings need to be allocated to 
model zones. Capital Area Metropolitan Planning Organization (CAMPO) zonal data was used to 
proportionally allocate dwellings to zones, using zonal population as a proxy for dwelling allocation. 
Workplace locations are disaggregated similarly; PUMS data provides work locations by PUMAs, and 
CAMPO zonal data was used to proportionally allocate jobs by zonal employment data (Moeckel, 
2018a). In order to simulate job openings in the region, a random 5% sample was taken of all jobs in 
the region, and those were duplicated but marked as available or vacant jobs.

The synthetic population generator creates four different files: one each for households, persons, 
dwellings, and jobs. Each person is part of a specific household and each household is matched to a 
certain dwelling. In addition, each working person in the synthetic population is matched with a spe-
cific job. People are assigned workplaces by drawing jobs located within their Census-specified working 
PUMA (Moeckel, 2018a). Note that there are also vacant jobs and dwellings that are not matched to 
persons or households. Extensive review of the synthetic population was completed to ensure it closely 
matched the Census.
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5 Simple Integrated Land-Use Orchestrator (SILO)

SILO is an open-source microscopic discrete choice land-use model where each person, household, and 
dwelling are treated as individual objects. All spatial decisions, such as household relocation or dwelling 
development, are modeled with logit models. Other non-spatial decisions, such as getting married or 
divorced, giving birth, or upgrading an existing dwelling, are modeled with Markov models by applying 
transition probabilities (Moeckel, 2018a). Each model year, SILO simulates many events that occur to 
persons, households, and dwellings. The events SILO simulates are summarized in Table 1 below. To 
avoid path dependency, events are modeled in random order.

 
Table 1. Summary of events simulated by SILO (Moeckel, 2018a)

Household events Person events Dwelling events

Household relocation Aging Construction of new dwellings

Buy or sell household vehicle Leave parental household Renovation

Marriage/Divorce Deterioration

Death Demolition

Find a new job/ Get laid off Increase or decrease of price

SILO is a simplified model with an emphasis on budget constraints as opposed to the traditional 
emphasis on utility maximization (Hawkins & Habib, 2018). There are three main constraints that 
SILO represents. First is the housing cost constraint, representing the fact that, though housing budgets 
can be exceeded in the short-term, household income must harmonize with their housing budget in the 
long run. The second main constraint modeled in SILO is the work-trip travel time constraint, a major 
consideration for household location choice (Moeckel, 2015). In the Austin Metro region, the average 
work-trip time is 26.8 minutes, which is quite similar to the national average work-trip time of 26.4 
minutes in 2017 (United States Census Bureau, 2017). When households are in the market to relocate, 
the job location of all workers in the household are considered, and dwellings that are far from the work-
ers’ employment locations are given a low utility. The third and final main constraint modeled in SILO 
is the household budget constraint. According to the Consumer Expenditure Survey from the Bureau 
of Labor Statistics, households spend an average of 13% of their pre-tax income on transportation, and 
low-income households spend as much as 28% (U.S. Department of Labor, 2019). For more informa-
tion on the inner workings of SILO, the authors recommend that readers look through Moeckel (2015).

 

6 Multi-Agent Transport Simulation (MATSim)

MATSim is an open-source, agent-based, dynamic transportation simulator that was used to track trav-
elers across the Austin Metro region for this research (Horni, Nagel, & Axhausen, 2016). The network 
for this region is obtained from OSM and converted to a network file to be used by MATSim (Open-
StreetMaps, 2019). It is agent-based in that each traveler and vehicle is represented individually and 
seeks utility maximization. Each agent has a plan, which is a tentative itinerary for the day. Agents can 
improve their plan by altering activity start and end times, they can change their route, or they can 
change the mode they take to travel, in order to maximize their utility (Simoni, Kockelman, Gurumur-
thy, & Bischoff, 2018). It uses queue-based dynamic traffic assignment as opposed to aggregated static 
assignment typical of traditional four-step models. Queue-based means cars on a link are in a queue that 
employs first-in first-out methodology, meaning it assumes one lane where vehicles cannot overtake one 



191Anticipating land-use impacts of self-driving vehicles in the Austin, Texas, region 

another. The link capacity varies road-to-road to account for more lanes, higher speed limits, etc. (Horni 
et al., 2016). Because of the high computational power needed to run this detailed agent-based simula-
tion, five percent of the population is used to allow for reasonable run times, and then link capacities are 
scaled down accordingly.

Neither MATSim nor SILO generate travel demand, so in order to simply assess congestion im-
pacts across the region, travel demand is simulated by sending all workers from home to work between 
the morning peak hours of 6 am to 9 am. Of course, this is a simplification that is not truly representa-
tive of the vehicles on the road, because not everyone goes to work every day; some people are sick, are 
on vacation, or are working from home. In addition, non-workers are found on the roads during these 
hours running errands or transporting their children. All things considered, it has been shown that this 
simulates true congestion fairly well, where congested links under this simplification replicate congested 
links found on Google Maps during peak travel hours (Ziemke et al., 2016).

7 Transferring information between SILO and MATSim

SILO provides information on dwelling and workplace locations for each agent, which needs to be com-
municated to MATSim to create trips. MATSim provides travel times between each zone pair which 
must be fed back to SILO to be considered for relocation decisions. Once SILO has finished a model 
year in which MATSim will run, a random sample of 5% of agents are chosen, conditional on the fact 
that the chosen agents are employed in a location within the Austin Metro region and that they have a 
car. Home and work zones of these persons are taken from SILO and random coordinates within these 
zones are assigned as the persons’ home and work locations. To determine start and end times for work-
trips, a uniform distribution from 6 to 9am is used to randomly select times for agents to leave home for 
work. Similarly, a normal distribution from 3 to 6pm is used to select times for agents to leave work for 
home (Ziemke et. al., 2016). An example of these departures and arrivals for the BAU scenario in the 
base year for the model region is shown in Figure 1 below.

Once a MATSim model year run is complete, zone-to-zone travel times are taken from MATSim 
and used to calculate accessibilities for each zone pair. This is taken into consideration when households 
are making relocation decisions in SILO.

 
 

Figure 1. Example of work-trip departures, arrivals, and the corresponding number of persons en-route for the BAU model in 
2013 (Horni et al., 2016)
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8 Case study

8.1 SILO inputs and parameter calibration

The Austin Metro region is 5,304 square miles and includes 2,102 traffic analysis zones (TAZs). In the 
base year of 2013, the model contains a population of 1,916,060, with 768,950 households, 810,751 
dwellings, and 1,040,915 jobs. These counts were determined from a combination of PUMS data, 
which is aggregated to the PUMA-level, as well as data from the Austin metropolitan planning organi-
zation CAMPO, which has information at the TAZ level. A transportation network was created based 
on OSM data. Default values are used to set speeds, and only AV (car) traffic is considered at this point.

The most important input aside from the synthetic population is the available land for develop-
ment at the TAZ level. CAMPO collects a detailed land-use inventory for the city of Austin and pub-
lishes this every year (Frank, 2019). The land that was categorized as “undeveloped” was determined to 
be land that was available to develop residentially. The database defines “undeveloped” as parcels without 
structures that have the potential for development. A GIS overlay of this categorized land was used to 
aggregate this information to determine the total developable land at the TAZ-level for the TAZs in the 
city of Austin. Unfortunately, there was not the same level of detailed data available for the non-city 
Austin Metro region. A linear regression model was used to make reasonable assumptions for available 
land in these non-city regions of Austin. Several iterations of linear regression models were run until only 
statistically significant (α=0.05) variables were left. See Table 2 (below) for these details.

Table 2. Linear regression model used to determine non-city developable land

Variable Coefficient Std. Err. t-stat p-value

Constant 9.89×10-2 8.34×10-3 11.86 0.000

Population density (persons/acre) -5.88×10-3 1.04×10-3 -5.66 0.000

Population density squared (persons/acre2) 1.39×10-4 3.50×10-5 3.96 0.000

Employment density (jobs/acre) -1.25×10-3 5.35×10-4 -2.33 0.020

Suburban (dummy = 1 if TAZ is suburban) 3.55×10-2 7.98×10-3 4.44 0.000

Median income (dollars) -3.39×10-7 8.25×10-8 -4.11 0.000

While this is a defensible approach, it is easy to imagine how this may be biased and how it could 
underestimate the amount of available land in the non-city metropolitan regions. This is because non-
city regions by definition are more rural, and so one would expect there to be more undeveloped land 
than in the city. Considering this fact, it is not terribly appropriate to train a linear regression model on 
data whose predictor variable takes certain values in one particular region and apply it to data whose pre-
dictor variable takes different values in another region. In this case, a linear regression model is trained 
on data with relatively less available land, and then applied to regions that one expects to have more 
available land. As such, the regression has some inherent bias.

Given these two motivations of (1) high parameter sensitivity and (2) concerns with using a linear 
regression model outside of its reasonable range, it is important to calibrate the available land values that 
are obtained for the non-city metropolitan regions. To perform this calibration, the model was run with 
varying percentages of the regression model results for these non-city Metropolitan regions. It was run 
with 50%, 75%, 100%, 125%, 150%, 175%, 200%, 250%, and 300% of the available, developable 
land that was output from the linear regression model for the model base year of 2013. Then, available 
land is calibrated by comparing the household distribution in subsequent model years. In particular, the 
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household distribution results for each of these model runs were compared to the household distribu-
tion from the CAMPO model in 2015, as well as for the CAMPO model household forecast for 2040.

To aggregate this calibration to a more digestible size, household distribution was compared at the 
county level for each model run to the CAMPO household distribution values in 2015 and 2040. As 
expected, decreasing the amount of available land in the non-city Metropolitan regions was further from 
the results in the CAMPO model, and increasing the amount of land in these regions helped, but only 
to a certain point. It was found that multiplying the developable land obtained from the linear regression 
model by 175% or 1.75 came the closest to the CAMPO model in 2015 and 2040. As such, these values 
for available and developable land were used in all scenarios discussed.

Several other important parameters were calibrated relative to the Maryland implementation of 
SILO. This includes parameters on pricing and construction demand, which proved to be the next most 
sensitive parameters for our modeling. The pricing model in SILO’s real estate model updates dwelling 
costs based on vacancy rates, which is taken as a proxy for demand. This is done for each dwelling type 
in each TAZ. Structural vacancy rates are defined as the regionwide vacancy rate for each dwelling type. 
If vacancy rates in a given TAZ are lower than the structural vacancy rate, dwelling prices increase, and if 
they are higher, prices decrease. However, dwelling price increases happen faster than decreases, reflect-
ing the landlord’s desire to keep prices as high as possible (Moeckel, 2018a). Structural dwelling vacancy 
rates are based on the vacancy rates in the base year and are as follows: 3% for single family detached, 
5.5% for single family attached, 5.5% for multi-family with two to four dwellings, 7% for multi-family 
with five or more dwellings, and 6.5% for mobile homes.

The median home price in Austin has risen 62% over the past eight years and 40% over the past 
five years, so a maximum change of two percent year over year as was used in the Maryland implemen-
tation would not replicate true housing prices for the area (Novak, 2019). Because of this, a maximum 
pricing change of 10% was allowed in the model to reflect major year over year pricing changes in more 
desirable areas of Austin.

Similarly, because of the near-doubling in population Austin is expecting to see over the course 
of the model years, the construction demand parameters needed to be adjusted to keep up with this 
population growth. Figure 2 shows the construction demand as a function of vacancy rate for the differ-
ent dwelling types modeled in SILO. This was calibrated based on the number of housing units of each 
type that have been built in Austin over the past ten years. Multi-family dwellings with greater than five 
dwellings per building have been constructed most often, followed by single family detached. These two 
types dominate the market, with much fewer of the other three dwelling types being constructed (City 
of Austin, 2019).
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Figure 2. Construction demand for dwelling types as a function of vacancy rate

While key parameters were calibrated so that the model reasonably represented the Austin Metro 
region, many parameters were left over from the Maryland application. For example, all of the demo-
graphic parameters were left the same as they were in the Maryland implementation. The demographic 
events did not need to be re-calibrated because of time constraints as well as the limited importance of 
those parameters for the scope of this project. This means that the probability of giving birth, getting 
married, death, etc., were not calibrated to Austin-specific data. They were calibrated for Maryland, and 
those values were used here. The authors believe that the demographic results are still reasonable for 
Austin because of the similarity of the study areas.

9 Scenario descriptions

Four main scenarios are defined and analyzed over a 27-year period. First is a business-as-usual (BAU) 
0% AV scenario where the traditional passenger car is the main travel mode and work-trip travel time is 
a major driver in household location and relocation decision making. The second case, the “AV – 50% 
VTTS reduction” scenario, looks at a scenario where personal AVs are used across the network. To mod-
el this simply, SILO was updated so that households value their work-trip travel time at half the amount 
they do in the BAU scenario, with respect to their household location and relocation decision making. 
This means that, when households are evaluating their satisfaction with their current dwelling, or when 
households are moving and considering new dwellings, the workers’ work-trip travel time factors into 
the decision-making at a 50% lower priority than it did in the BAU scenario. This second scenario is 
meant to represent an upper bound of the changes in the value of travel time that are expected when 
self-driving vehicle technologies emerge assuming workers travel privately by AVs, and can work, sleep, 
or do some other task of value while commuting. The third scenario is the “AV – 25% VTTS reduc-
tion” scenario. This is the same as the “AV – 50% VTTS reduction” scenario, but the workers’ work-trip 
travel time factors into the decision-making at a 25% lower priority than it did in the BAU scenario. 
This third scenario is meant to represent a lower bound of the changes in the value of travel time that 
are expected when self-driving vehicle technologies emerge. Note that vehicle occupancy is unaltered 
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in both of these AV scenarios. The reason for these two different VTTS reduction scenarios is because 
there is a lot of uncertainty as to how much AVs will impact travelers’ commuting trips. It was recently 
estimated that AVs could reduce work-trip VTTS by 31% compared to traditional driving, and so 25% 
and 50% were deemed good reductions to consider (Steck, Kolarova, Bahamonde-Birke, Trommer, & 
Lenz, 2018). Finally, the fourth case looks at the case of shared AV (SAV) implementation with a high 
penetration of dynamic ride sharing (DRS). This scenario is called the “Hi-DRS SAV” scenario from 
here forward. This is modeled in a simplified fashion by updating SILO so that households value their 
work-trip travel time at 25% the level they do in the BAU scenario, with respect to their household 
location and relocation decision making. In addition, MATSim is updated in this scenario to have twice 
the capacity. This is meant to model a situation where there are about 50% fewer vehicles on the road, 
meaning the average vehicle occupancy is about two, which is double the average vehicle occupancy as-
sumed in the first two scenarios.

Note that the model years are based on predictions for 2013 – 2040, but because we are looking 
at scenarios with full penetration of AVs, we do not assume those to be representative years for the full 
implementation of this technology. However, this is the data that we had available, so these years were 
used. But the results might best be considered from years 2033 – 2060, for example, when this technol-
ogy may be heavily or fully adopted for the whole duration.

10 Results

Table 3 below gives a summary of some major results that can be drawn from the four scenarios that 
are run from the base to the final model year in SILO, with MATSim running every ten model years 
to update work-trip travel times. The first factor to note from Table 3 is that the Austin Metro region is 
growing dramatically over the model time period. More than a million households are expected to move 
to the region in the 27 years between the base and final model year, which is a 134% increase in the total 
number of households. On this note, it is also relevant to realize that the number of persons is fixed and 
exogenous to the model. This means that variations in household counts in the different scenarios are 
due to slight changes in household compositions which are modeled stochastically. Another major result 
of note in this realm is that many more of these households live in the city of Austin in the BAU scenario 
than in the either of the AV scenarios or the Hi-DRS SAV scenarios, meaning that there are many fewer 
households living in the non-City Metropolitan region in the BAU scenario than there are in the AV 
scenarios or the Hi-DRS SAV scenario.

There are also more single-family dwellings in the AV scenarios and the Hi-DRS SAV scenario as 
compared to the BAU scenario in the final model year. This is because there is a higher preference for 
this dwelling type due to lower travel costs in these AV and SAV scenarios relative to the BAU scenario 
(0% AV), so there is more demand for, and thus more construction of, single-family dwellings. Similarly, 
there are more multi-family dwellings with five or more dwellings in them in all scenarios because there 
are more of these dwellings constructed (see Figure 2). New dwellings have the highest quality, and since 
this is more valued on a relative basis in the AV – 50% VTTS reduction scenario relative to the BAU 
scenario, more people move into these MF5+ dwellings, and thus there is higher demand, and more are 
constructed.
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Table 3. Summary of scenario results comparing model base year (2013) to end year (2040)

Base year BAU (0% AV)  
– end year

AV (50% 
VTTS reduc-
tion) – end 

year

AV (25% 
VTTS reduc-
tion) – end 

year

Hi-DRS SAV 
scenario – end 

year

Household-Level Statistics

Number of households 768,950 1,798,924 1,798,648 1,798,750 1,799,542

Number of households in 
the city of Austin (CoA)

462,465 944,520 894,744 915,153 892,711

Number of households in 
non-CoA Metro area

306,485 854,404 903,904 883,597 907,182

Dwelling-Level Statistics

Number of SFD dwellings 489,673 863,756 921,076 851,884 921,947

Number of SFA dwellings 30,497 32,880 33,507 32,832 33,638

Number of MF5+ dwellings 206,120 837,169 820,462 826,955 824,533

Number of MF2-4 dwell-
ings

45,744 52,245 51,760 53,831 51,983

Number of MH dwellings 38,927 48,559 52,516 49,762 53,227

Available, Developable Land

Total available, developable 
land

426.9 mi2 245.2 222.9 235.3 227.4

Available, developable land 
in the CoA

69.0 mi2 8.9 10.6 9.7 14.5

Available, developable land 
in metro areas

358.0 mi2 236.3 212.3 225.6 212.9

Work-Trip Statistics

Average work-trip travel 
time

31.4 mins 38.5 41.6 38.9 39.8

Average work-trip time for 
those living in the CoA

22.3 mins 25.7 25.6 25.7 25.6

Avg. work-trip time for 
those living in metro areas

41.4 mins 48.4 52.1 49.9 50.5

Number of commuters with 
60+ minute work-trips

2639 6006 8007 6420 6993

There is a 42.6% reduction in available developable land in the 27-year period between the base 
to final model year in the BAU scenario (0% AV), a 47.8% reduction in the same period in the AV – 
50% VTTS reduction scenario, a 44.9% reduction in the AV – 25% VTTS reduction scenario, and a 
46.7% reduction in the Hi-DRS SAV scenario. There is a larger total reduction in the AV scenarios and 
the Hi-DRS SAV scenario than in the BAU scenario because households care relatively more about size 
than they do in the BAU scenario, so there are more SFDs which are on larger plots of land. There is 
also a larger reduction in available land in the CoA in the BAU scenario than there is in the AV and the 
Hi-DRS SAV scenarios. On a related note, there are more households living in the CoA in the BAU 
scenario than there are in the other scenarios, and less living in the metro regions in the BAU scenario 
than in the other scenarios.

Finally, work-trip travel times increase significantly in all four scenarios in the 27-year period be-
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tween the base and final model year. However, they increase significantly more on average in the Hi-
DRS SAV scenario, and even more so in the AV – 50% VTTS reduction scenario, by the final model 
year as compared to the BAU scenario (0% AV) in the final model year, on average. The AV – 25% 
VTTS reduction had the smallest increase in average work-trip travel time relative to the BAU scenario. 
Additionally, there are many more people with extreme work-trips of over one hour in the AV scenarios 
and the Hi-DRS SAV scenario in the final model year, compared to the BAU scenario in the final model 
year.

For ease of understanding, as the discussion of results goes into more detail in subsequent sections, 
the AV – 25% VTTS reduction is dropped from the conversation and the AV – 50% VTTS reduction 
scenario is simply referred to as the “100% AV” scenario.

10.1 Work-trip travel time results

Now, work-trip travel time results are compared across the four scenarios. Figure 3 shows the distribu-
tion of work-trip travel times across all workers living and working in the Austin Metro region in the 
base model year and 20 years after the base year in each scenario. The base year is shown in orange in 
Figure 3, and the average work-trip travel time in the base year is 31.4 minutes.

The BAU scenario 20 years after the base year is shown in green in Figure 3. In this scenario, each 
bin seems pretty uniformly stretched upwards, so the distribution looks similar but there are more trav-
elers in each bin. The average work-trip travel time 20 years after the base year in the BAU scenario is 
38.5 minutes, so work-trip times are nearly five minutes longer across all workers, relative to the base 
model year.

The 100% AV scenario 20 years after the base year is shown in yellow in Figure 3. The major dis-
tinction of note in this figure is how many more workers are commuting sixty minutes or more to work. 
This makes sense because households are no longer considering this work-trip time as strongly in their 
household location and relocation decisions, making other dwelling attributes such as dwelling size and 
quality more important. The average work-trip travel time 20 years after the base year in the 100% AV 
scenario is 41.6 minutes, so work-trip times are over ten minutes longer across all workers, relative to 
the base model year.

The Hi-DRS SAV scenario 20 years after the base year is shown in blue in Figure 3. The main dif-
ference between the 100% AV and the Hi-DRS SAV scenario is that there is a 12.7% decrease in the 
number of extreme work-trips of 60 minutes or more one-way. The average work-trip travel time 20 
years after the base year in the Hi-DRS SAV scenario is 39.8 minutes, so work-trip times are over eight 
minutes longer across all workers, relative to the base model year.
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Figure 3. Work-trip travel times in the Austin metro in the base model year and 20 years after the base year in each scenario

11 Household location results

The total number of households in the region increases by 134% in both scenarios. This is a major 
growth from about 769,000 households in the BAU model year to 1.80 million households in the final 
model year. In the 100% AV scenario, more of this growth is happening in the less-central non-city met-
ropolitan regions than the BAU scenario (0% AV). The number of households in the non-city metro 
regions in the 100% AV scenario grows by 194.9% from the base to the final model year, compared to 
the BAU scenario which grows by 178.8% in the same area over the same time period. Similarly, there is 
then less growth happening in the city of Austin in the 100% AV scenario than in the BAU scenario. In 
the 100% AV scenario, the number of households in the city of Austin grows by 93.5% from the base to 
the final model year, compared to the BAU scenario which grows by 104.2% in the same area over the 
same time period. Figure 4 below shows the spatial layout of the difference in the number of households 
by zone in the final model year of the 100% AV scenario relative to the final model year of the BAU 
scenario (0% AV). Positive values in the figure (shown in dark orange) indicate more households in that 
zone in the 100% AV scenario relative to the BAU scenario in the final model year. Negative values in 
the figure (shown in white) indicate fewer households in that zone in the 100% AV scenario relative to 
the BAU scenario in the final model year.
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Figure 4. Difference in where households are located in the 100% AV scenario relative to the BAU scenario in the final model 
year

In the Hi-DRS SAV scenario, more of this growth is happening in the non-city metropolitan 
regions than the BAU scenario (0% AV). There is also slightly more growth happening in the non-city 
metropolitan regions in the Hi-DRS SAV scenario relative to the 100% AV scenario. In the Hi-DRS 
SAV scenario, the number of households in the non-city metro regions grows by 196.0% from the base 
to the final model year, compared to the BAU scenario which grows by 178.8% in the same area over 
the same time period. Similarly, there is then less growth happening in the city of Austin in the Hi-DRS 
SAV scenario than in the BAU scenario. In the Hi-DRS SAV scenario, the number of households in 
the city of Austin grows by 93.0% from the base to the final model year, compared to the BAU scenario 
which grows by 104.2% in the same area over the same time period. A figure is not shown for this sce-
nario, because it looks quite similar at the spatial level.

11.1 Available and developable land results

Austin-Round Rock, Texas, is number four on the list of the fastest growing cities in America according 
to USA Today (2019). Because of this, it is expected that available and developable land will decrease sig-
nificantly over the model period of the base to the final model year. This is seen through a 42.6% reduc-
tion in developable land over the model time period in the BAU scenario (0% AV), a 47.8% reduction 
in the 100% AV scenario, and a 46.7% reduction in the Hi-DRS SAV scenario. This larger reduction in 
developable land in the 100% AV and in the Hi-DRS SAV scenarios compared to the BAU scenario is 
because households care relatively more about size than they do in the BAU scenario, so there are more 
single-family dwellings constructed, which take up more land.
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There is also a larger reduction in available land in the city of Austin in the BAU scenario (0% AV) 
than there is in the city in the 100% AV and in the Hi-DRS SAV scenarios. This is because households 
are more willing to live in the less central regions and less willing to pay higher prices to live in the city 
in both of the AV scenarios, because they do not care as much about their work-trip travel distance. In 
the BAU scenario, there is an 87.1% reduction in available land in the city and a 34.0% reduction in 
available land in the non-city metropolitan regions. In the 100% AV scenario, there is an 84.7% reduc-
tion in available land in the city and a 40.7% reduction in available land in the non-city metropolitan 
regions. In the Hi-DRS SAV scenario, there is an 78.9% reduction in available land in the city and a 
40.5% reduction in available land in the non-city metropolitan regions. Figure 5 below indicates the 
spatial distribution of available land by zone in the final model year in the 100% AV scenario relative 
to the BAU scenario. Positive values in the figure (shown in dark green) indicate more available land in 
that zone in the respective AV scenario relative to the BAU scenario in the final model year. Negative 
values in the figure (shown in white) indicate less available land in that zone in the 100% AV scenario 
relative to the BAU scenario in the final model year. A figure is not shown for the Hi-DRS SAV scenario, 
because it looks quite similar at the spatial level.

 
 

Figure 5. Difference in the amount of available, developable land in the 100% AV scenario relative to the BAU scenario in the 
final model year
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12 Conclusions and limitations 

The adoption of AVs is fast approaching as many companies are hard at work on their version of the 
technology. As such, engineers and planners must begin to plan and prepare for important impacts of 
their adoption. There are many benefits one could imagine from the advent of AVs, including safety 
improvements, increased economic productivity, and improved quality of life. However, there are also 
secondary negative impacts of these technological changes that are plausible if appropriate action is not 
taken to mitigate them. This includes the impacts of urban sprawl as are discussed in the present study, 
which has negative consequences including increased emissions and congestion. There are many other 
negative impacts one could envision of AV technology adoption that are not the focus of this study 
but require future work. This includes induced demand for travel, issues with equity surrounding the 
technology, and safety and privacy issues. There are many opportunities for important research in the 
area of AV impacts.

The present study provides an initial look at potential residential land-use implications from a re-
duction in the value of the time it takes to complete one’s work-trip which will be expected in a future 
of fully automated vehicles. Because this model is not fully calibrated for the model region, one should 
really only consider the relative differences between the BAU scenario and the two AV scenario results, 
rather than the true values, and make conclusions based on those.

Of major note, it was seen that work-trip travel times increase quite significantly in the 100% AV 
scenario relative to the BAU scenario (0% AV) 20 years after the base year. There was also an increase in 
work-trip travel times in the Hi-DRS SAV scenario relative to the BAU scenario 20 years after the base 
year, to a lesser degree. Specifically, average work-trip travel times increase by 3.1 minutes in the 100% 
AV scenario relative to the BAU scenario (0% AV) in the final model year, which is an 8.1% increase. 
Additionally, average work-trip travel times increase by 1.3 minutes in the Hi-DRS SAV scenario rela-
tive to the BAU scenario in the final model year, which is a 3.4% increase. There is also an increase in 
the number of “extreme” work-trip of 60 minutes or more. There are 2,001 more workers in the model 
region with an extreme work-trip in the 100% AV scenario relative to the BAU scenario in the final 
model year, which is a 33.3% increase. There are also 987 more workers in the model region with an 
extreme work-trip in the 100% AV scenario relative to the BAU scenario in the final model year, which 
is a 16.4% increase.

The work in this study also found differences in the distribution of households across the model 
region between the two AV scenarios relative to the BAU scenario as well. There were 49,776 fewer 
households in the city of Austin in the 100% AV scenario relative to the BAU scenario (0% AV) in the 
final model year, which is a 5.3% decrease. Similarly, there were 51,809 fewer households in the city 
of Austin in the Hi-DRS SAV scenario relative to the BAU in the final model year, which is a 5.5% 
decrease. On this same note, there were 49,500 more households that were located in the non-city 
metropolitan regions of Austin Metro in the 100% AV scenario relative to the BAU scenario in the final 
model year, which is a 5.8% decrease. Similarly, there were 52,778 more households that were located 
in the non-city metropolitan regions of Austin Metro in the Hi-DRS SAV scenario relative to the BAU 
scenario in the final model year, which is a 6.2% decrease.

Also related to these results are the differences in available and developable land. There is relatively 
more available land in the city of Austin in the 100% AV and the Hi-DRS SAV scenarios relative to 
the BAU scenario in the final model year and relatively less available land in the city of Austin in the 
100% AV and the Hi-DRS SAV scenarios relative to the BAU scenario in the final model year. Namely, 
there was 24.0 square miles less land located in the non-city metropolitan regions of Austin Metro in 
the 100% AV scenario relative to the BAU scenario (0% AV) in the final model year, which is a 10.2% 
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decrease. Additionally, there was 23.4 square miles less land located in the non-city metropolitan regions 
of Austin Metro in the Hi-DRS SAV scenario relative to the BAU scenario in the final model year, which 
is a 9.9% decrease. Along the same lines, there was 1.7 square miles more land located in the city of 
Austin in the 100% AV scenario relative to the BAU scenario in the final model year, which is a 19.1% 
increase. Additionally, there was 5.6 square miles more land located in the city of Austin in the Hi-DRS 
SAV scenario relative to the BAU scenario in the final model year, which is a 62.9% increase. All of these 
are directionally what one would expect when AVs and SAVs are deployed and work-trip times are not 
as strong of a consideration in household location and relocation decision-making.

It is interesting that work-trip travel times do not increase as dramatically in the Hi-DRS SAV 
scenario as they do in the 100% AV scenario relative to the BAU scenario, but the land-use impacts are 
similar and even more pronounced in the Hi-DRS SAV scenario than they are in the 100% AV scenario. 
This makes sense because sharing rides in the SAV scenario leads to shorter travel times because of the 
reduction in the number of vehicles on the road relative to the AV scenario. Because these travel times 
decrease, households are willing to live longer distances from their workplaces, increasing urban sprawl. 
Of particular note, although the sprawl is more significant in the Hi-DRS SAV scenario, the emissions 
implications would be lower than the 100% AV scenario because the rides are shared, meaning there are 
fewer vehicles traveling those longer distances.

These differences between scenarios in available and developable land, the composition of single-
family vs. multi-family dwellings, and so on, are precisely the reasons we run these more complicated 
microsimulation ITLUMs. In using this SILO-MATSim integration, we are able to simulate interac-
tions that do not appear in more simplified models of AV adoption. This is to note that just running a 
mode choice model, for example, would not give us the full picture and would not be able to capture 
some of these secondary impacts of a major mobility shift such as the implementation of AVs.

It is also important to understand some of the limitations to our study. For one, there are major 
simplifications made in the scenario definitions for the “100% AV” and the “Hi-DRS SAV” scenarios, 
so these results must be considered taking into account these simplifications. In addition, AVs, and par-
ticularly SAVs, have major implications for parking needs. Currently, parking is an important housing 
choice consideration, and if you do not need to worry about parking because you can easily use SAVs 
on-demand, this could cause conflicting results to our study, such as re-urbanization. These factors are 
not considered. In addition, telework is becoming a more common trend in workplaces, and is unfortu-
nately not represented by SILO as an option for workers. An additional limitation of note, SILO does 
not account for any new travelers that may occur in response to the introduction of AV technology, 
such as those currently without driver's licenses. There are other parallel technological advancements 
that could also stimulate AV technology or alter our mobility patters, such as virtual reality and 5G 
communication technologies. These types of developments are not considered in this study. Finally, 
there are limitations in assumptions made in the SILO model framework such as the fact that the only 
transportation consideration in the household location and relocation decision-making is the work-trip 
travel time. This is a major limitation because the trip to and from work only accounts for 17% of the 
total average annual person miles traveled per household (U.S. DOT, 2018).

This is a crude initial look at some of the residential land-use and transportation impacts that could 
occur in a future of self-driving vehicles. Further research is needed in this area. It would be beneficial 
future work to increase the complexity of the integration of the land-use and transportation model. This 
could include using AV and/or SAV MATSim plug-ins to both generate AV/SAV travel demand and to 
simulate all of the traffic in the system, not just work-trips. Then, one could also model a mix of AVs and 
traditional passenger cars. It would of course be beneficial to spend the time to fully calibrate the LUM 
for the model region too. Though this is very time-consuming, it would improve the reasonability of 
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results. Finally, it would be constructive to increase the complexity of the LUM to include more acces-
sibility and transportation characteristics into the household location and relocation decision-making. 
For example, many households care about the distance to the nearest grocery store and proximity to 
restaurants and retail, not just their work-trip distance. As more complexity is added to these ITLUMs, 
there is of course further calibration and data needs. However, this is where the field of ITLUMs should 
be headed.
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