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Abstract: A strong inter-dependence exists between the decision to develop land and the expected re-
turns to be gained from that development. Current practice in UrbanSim modeling treats developer
behavior and the emergence of land prices as independent processes. ăis assumes that land prices are
exogenous to the interaction between buyers and sellers—an assumption that is difficult to sustain in ur-
ban economics and real estate research. ăis paper presents an attempt tomodel the two processes as oc-
curring simultaneously. Using theUrbanSimmodel formetropolitanTel Aviv, we compare the results of
forecasts for densities (residential and non-residential) and land values for the period 2001–2020. Our
results show that simultaneous estimation tends to produce more accentuated outcomes and volatile
trends. ăe validity of these results and the implications of this approach in the wider context of land
use modeling are discussed.
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1 Introduction

Much urban economics research points to the endogeneity in the relationship between devel-
oper behavior and land prices; developer behavior depends on land prices and land prices de-
pend on developer behavior. In UrbanSim, while this independence is noted, the modeling
strategy assumes prices are exogenous to interaction between buyers and sellers as their indi-
vidual transactions are too small to affect aggregate prices. Similarly, jobs and households are
assumed to be price-takerswhodon’t have enoughpower to inĔuencemarket prices. In practice,
however, it is reasonable to assume that land prices and developer behavior are co-determined
and occur simultaneously.

Dealingwith this endogeneity alsomeans addressingwider issues such as the correct identi-
đcation of models (error structures), instrumentation, and dynamics. ăe treatment of dynam-
ics is closely linked with the endogeneity of prices. In the current UrbanSim land price model,
dynamics are dealt with through cross-sectional simulation of end-of-the-year-prices based on
updated cell characteristics (from the developer model, household and jobs location choices,
and the transport model). ăese land prices then inĔuence households, jobs, and developer be-
havior in the following year. ăis “back-door” endogeneity is the result of these quasi-dynamics.
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In this paper, we estimate the simultaneity between house prices and developer behavior.
ăe paper reviews the way in which this interdependence and price endogeneity are dealt with
in large-scale urban models. ăe paper also presents current practice in UrbanSim. Aĕer that,
we present a simple model that highlights the complimentarity between land conversion and
land price. We then outline an estimation strategy based on the work of Maddala (1983) that
deals with a “mixed” system in which one variable is continuous and the other dichotomous.
In the standard case of two continuous dependent variables, simultaneity is estimated by trans-
ferring the đtted values from one model into the other. However, in our case, as one variable is
dichotomous, the variance matrix needs to be adjusted. Aĕer describing the UrbanSim model
for metropolitan Tel Aviv, the paper proceeds to compare empirical results of two UrbanSim
runs using this model. ăe đrst is based on the conventional UrbanSim practice of treating
land price and developer behavior models independently. ăe second is based on a situation
in which the two are co-determined. Our results point to greater volatility in results when si-
multaneous estimation is used—although this seems to settle down over the longer term. We
discuss the validity of these results, compare them to actual data for recent years, and attempt
to identify consistencies in the differences between the two methods.

2 Literature Review

Large-scale urban models originating from both the land use-transportation tradition and the
micro-simulation world have made rapid advances in recent years. Many of these systems are
comprehensively reviewed in Chang (2006), Hunt et al. (2005b), and Iacono et al. (2008). In
this section, we đrst review the way in which existing models treat the two issues that form
the focus of this paper—namely, the simultaneity that exists between developer behavior and
land prices, and the exogeneity inherent in land prices. We then examine current practice in
UrbanSim modeling with respect to these two topics.

ăe ‘spatial interaction’ framework provides the đrst class of models that address interde-
pendencies between actors and markets. ăe ITLUP model, through its DRAM submodel
(Putnam 1996), is probably the most popular of this class of analytic approaches, grounded
in a Lowry-type allocation process. For our purposes, however, this class of models is some-
thing of a straw man. Households and workers are the only actors explicitly considered and
only in respect to their demand for land (which is then allocated across zones). ăere is no
direct consideration of the supply side, which is exogenously đxed by development and regu-
latory constraints. As such, no price structure emerges and no market clearing mechanism is
speciđed.

A more challenging approach from our perspective is the class of ‘bid-rent’ transportation
allocation models. ăese models, best exempliđed by Martinez’s MUSSA model (Martinez
1992, 1996, 2000), offer sophisticated market-clearing mechanisms for land markets and ex-
plicitly model developer behavior. ăe bid-rent mechanism is a central feature of this analytic
system and draws on classic work by Rosen (1974) and Ellickson (1981) that coupled hedonic
analysis within the bid-rent model. In this model, the market price for the bundle of attributes
that comprise a location is jointly determined by the offer price of suppliers of services and the
evaluation of those services by consumers. In the ensuing bidding process, offers are determined
bywillingness to pay and themodel produces a pattern of landuses and values inwhich the users
and the value of locations are mutually determined.



Simultaneous modeling of developer behavior and land prices 

In Martinez’s 1992 “bid-choice” formulation of the Rosen-Ellickson bid rent model, de-
veloper behavior is explicitly addressed and land prices are treated as exogenous. ăe MUSSA
model provides a static equilibrium for a given target year by adjusting developer behavior on
the supply side and consumer utility levels on the demand side, in order to get supply and de-
mand to balance. In contrast to the UrbanSim approach, this equilibrium is imposed. In line
with UrbanSim, this model draws on strong micro-economic foundations in order to derive a
demand-supply equilibrium and endogenous land prices. Similarly, as inUrbanSim, land prices
at each time period depend only on the competitive bidding process inducing a delay effect as
land supply changes in response to lagged land prices.

ăe third class ofmodels we consider are “spatial economic” (or “input-output”)models. A
key feature of these models is the use of an explicit economic accounting approach that traces
inter-sectoral spatial and monetary Ĕows of goods and services between producers and con-
sumers (input-output analysis). ăe monetary Ĕows between sectors are used to derive the
interdependencies between location and accessibility in the land use-transportation context.
When money Ĕows in one direction from buyer to seller, an opposite Ĕow (of services, labor or
land) usually occurs from seller to buyer. In land use-transportation modeling, this framework
is applied to the world of developers who improve land and construct structures that are allo-
cated according to endogenously generated demand. Various models such as TRANUS (de la
Barra et al. 1984), MEPLAN (Hunt and Simmons 1993) and more recently PECAS (Hunt
et al. 2005a) have been developed employing this approach.

ăe input-output basis of these models makes them uniquely able to incorporate spatial
Ĕows of goods and services. With respect to the issues that interest us, they are less unique.
On the supply side, land is đxed at each time period. On the demand side, land consumption
is elastic with respect to price. Land prices are endogenous and the short-run equilibrium is
Walrasian rather than driven by competitive bidding (as in MUSSA) or random utility (as in
UrbanSim). Developers allocate land to different zones as a function of the characteristics of
the unit and its price. ăe short-run market equilibrium is reached within the time period.

Current practice in UrbanSim follows the models described above in some respects and
diverges from them in others. In the core UrbanSim system, the models that simulate the be-
havior of the key agents in the urban arena are each estimated independently (household and
employment location models, household and employment mobility models, developer model,
land price model, etc.). ăese models do not drive each other. Rather, they interact through
shared data that is pooled in the system’s object store, allowing them tomonitor changes in each
others’ data đelds and to coordinate their activities. Once estimated, the model coefficients
are re-incorporated into the UrbanSim system through a translation and aggregation layer that
mediates between the object store and themodels themselves. ăese coefficients drive the allo-
cation process of the model and the placement of households and workers in vacant cells.

UrbanSimmodeling practice is at odds with the urban economics literature in its represen-
tation of the relationship between developer behavior and land prices in two respects. First,
developer behavior and land prices are not treated as interdependent. In practice, however, the
choice to convert a parcel of land to a different use is jointly determined with the expected re-
turn from that parcel. Second, UrbanSim treats land prices as exogenous. ăe justiđcation for
this is that individual buyers and sellers in the land market are too small-scale to directly in-
Ĕuence prices (Waddell and Ulfarsson 2003) although in aggregate this would presumably not
hold. Similarly, households and workers who relocate are assumed to lack the market power to
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inĔuence prices (Waddell et al. 2003). ăese are convenient assumptions that bypass the need
to model how a price structure emerges and the market clears. ăey also mitigate the need to
deal with the complexities of asymmetric information, expectations, and search processes in the
land market.

ăis is not to say that the endogeneity inherent in simulation models of social choices
(where to live, work, etc.) has been overlooked by the developers ofUrbanSim. Waddell (2005)
notes some of the drawbacks of themarket-clearingmechanism inUrbanSimwhereby prices re-
spond at the end of the year to characteristics of locations and to the balance of supply (vacancy
rates) and demand at each location. ăis makes the land price model essentially an ‘end-of-
the-year’ model in which quasi-dynamics come through changes in grid cell attributes (due to
the developer model, household and job location models, and the transport model). ăe up-
dated cell characteristics become the land prices that inĔuence household job location choice
and developer behavior in the next year. In order to replace this rather mechanistic process,
the simulation of a ‘landlord’ agent that mediates between buyers and sellers in order to ensure
balance between supply and demand has been suggested (Waddell 2005).

Recent work on capacity constraints in housing markets also notes that markets may not
fully clear, thereby limiting the choices available to agents such as buyers anddevelopers (dePalma
2007). ăis work notes two sources of bias that may arise in these constrained markets. ăe
đrst results from the limited choice of alternatives available to agents. ăe second arises from
the fact that land or house prices are co-determined with agent behavior in these markets and
from the endogeneity inherent in this process that needs to be addressed.

ăe simultaneity between house prices and other features of the land market such as ur-
ban size (Goffette-Nagot 2008), regulatory practices (Ihlanfeldt 2007), and new construction
(Mayer and Somerville 2000) has generated extensive attention in the urban economics and
real estate literature. Within the UrbanSim modeling system, the issue has been partially ad-
dressed by end-of-the-year adjustments. We investigate whether these quasi-dynamics can be
improved by the use of simultaneous estimation.

3 A Simple Model

To illustrate the simultaneity between land prices and developer behavior, we posit the follow-
ing aggregate model (Figure 1) that incorporates relative pricing. ăe short run supply and
demand balance at each time period is assumed to retain the hedonic structure in UrbanSim
with the addition of price expectations. Land is supplied by the landowner/developer (we as-
sume them to be synonymous) with supply curve S . We assume two types of land, A and B .
ăe relative price of landπ is PA/PB . ăe supply of land σ in A is LA/L. ăe amount of land
supplied is a positive function of relative price, expected relative price in the future πe and a
factor Z that includes all other inĔuences (externalities, etc.). Z also causes the supply curve to
shiĕ to the right, as shown in equation (1). If the error term u is correlated with πt , this will
have a negative effect on σt .

σt = Fσ (πt ,π
e
t+1,Zt )+ u (1)

Demand is posited as a negative function of relative price, as shown in (2). X expresses all
the factors that that push the demand curve to the right. If πt and v are correlated, this will
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have a positive effect on demand. ăe market clears when σt = dt .

di t = Fd (πt ,Xt )+ v (2)

In the disaggregated case, the observation is the i th land parcel. ăe price of parcel i in use A
at time t is PAi t and, as before,πi t = PAi t/PBi t . ăe amount of land to be converted is now:

σi t = αi +βπi t + γπ
e
i t+1+λZi t +Ui t (3)

ăe demand for land is :
di t = θπi t +µXi t +Vi t (4)

It should be noted that the relative price for parcel i is in relation to the average price, i.e.
θ(πi t − π̄t ), and that the aggregate price represents the sum of all land parcels, i.e. πt =∑n

i=1 wiπi t .
Finally, we assume rational expectations. ăis means that the future land price is based on

some expected price and an error term: πi t+1 =π
e
i t+1+vi t+1. Again, the error term is of im-

portance here. People do not expect to err and therefore expected future error E(vi t+1) = 0 .
Additionally, people analyze current information when formulating their expectations. ăere-
fore the error is also inĔuenced byΩ, a current information factor for formulating future relative
prices such that E(vi t+1Ωi t ) = 0.
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Figure 1: Supply and Demand in the Land Market 
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Figure 1: Supply and demand in the land market.

4 Method and estimation technique

Our estimation strategy is based on Maddala (1983) and incorporates the use of probit two-
stage least squares (P2SLS) to estimate simultaneous equations for land prices and developer
behavior. We adopt an iterative process (described below) in order to attain partial equilibrium.
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Formulating a joint sub-system incorporating land prices and developer behavior presents var-
ious estimation challenges as the former is an observed continuous variable while the latter is
dichotomous. As such, the standard 2SLS approach where both endogenous variables are con-
tinuous is clearly not suitable. ăe estimation strategy suggested by Maddala (1983) involves
creating instruments for the endogenous variables in the đrst stage and substituting them into
the structural equations in the second stage. Tooperationalize this, we use theCDSIMEQtwo-
stage routine programmed in STATA (Keshk 2003). In Stage 1 (estimated byOLS and probit),
models are đtted using all exogenous variables and the predicted values obtained. From these
reduced-form estimates, predicted values from each model are obtained for use in Stage 2. In
this stage, the original endogenous variables from the đrst stage are replaced by their đtted val-
ues. Finally, we correct for standard errors (adjustment of the variance-covariance matrices) as
the models are based on predicted values and not on the appropriate observed values.

In our case the two-equation system consists of a land pricemodel (y1, continuous variable)
estimated by OLS and a developer model (y2, dichotomous variable) estimated by probit, as
follows:

y1 = γ1y∗2 +β1X1+ u1 (5)

y∗2 = γ2y1+β2X2+ u2 (6)

Note that while y1 = y∗1 , y∗2 is observed as a dichotomous endogenous variable, i.e. it is
equal to 1 if y∗2 > 0 and equal to 0 otherwise.

As y∗2 is not observed (i.e., only observed as a dichotomous variable), the structural equa-
tions (5) and (6) are re-written dividing through by standard errors:

y1 = γ1σ2y∗∗2 +β
′
1X1+ u1 (7)

y∗∗2 =
γ2
σ2

y1+
β′2
σ2
+X2

u2

σ2
(8)

ăe two-stage estimation then proceeds with the estimation of reduced-form OLS and probit
models for house prices and developer behavior respectively:

y1 =
∏

1
X1+ v1 (9)

y∗∗2 =
∏

2
X2+ v2 (10)

where X is the matrix of all exogenous variables and
∏

1,
∏

2 are vectors of parameters to be
estimated.

ăe predicted values from equations (9) and (10), ŷ1, ŷ∗∗2 , are plugged back into themodel
for the second-stage estimation. ăus, the original endogenous variables in (5) and (6) are re-
placed by their đtted values from (9) and (10):

y1 = γ1 ŷ∗∗2 +β1X1+ u1 (11)

y∗∗2 = γ2 ŷ1+β2X2+ u2 (12)

Finally, a correction for the estimated standard errors is needed. ăese are based on ŷ∗∗2 , ŷ1
and not on y∗∗2 , y1. ăe CDSIQEM procedure adjusts the variance-covariance matrices and
produces corrected variances for use in equations (7) and (8).
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5 Data

We illustrate the simultaneous estimation using anUrbanSimmodel calibrated for the Tel Aviv
metropolitan region. ăis area represents the economic heartland of Israel and is the national
gateway to the global economy (Kipnis 2009). ăe extent of economic agglomeration in Tel
Aviv is underscored by the fact that the area produces 49 percent of national GNP, houses over
40 percent of the national population andprovides 30 percent of all national employmentwhile
accounting for only seven percent of Israel’s land area (Figure 2). Furthermore, the region is
home to over 60 local authorities representing nearly a quarter of all city governments in Israel.

Figure 2: ăe Tel Aviv metropolitan area.

ăepreparation of the six keyUrbanSim tables required data from a variety of sources. ăe
contents of the households table were derived from the National Census 1995 conducted by
the Central Bureau of Statistics (CBS). ăe jobs table used data from the CBS National Travel
Survey 1996. Land use data and historical development events came from the Israel Land Ad-
ministration data for a 15-year period starting in 1985. Relocation rates were estimated annu-
ally based on the national Labor Force Survey conducted by the CBS, control totals were taken
from the Israel National Outline Plan for 2020, digital land use layers were retrieved from the
Hebrew University GIS database, and accessibility indices were derived from logsums gener-
ated by the Tel Aviv Metropolitan Area Travel Model.

ăe Tel Aviv UrbanSim (version 3) application was built following textbook instructions
as much as possible (Felsenstein et al. 2007). ăe base year for themodel was 1995 andwe used
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a grid system of 250x250m. ăis allowed us to include data available in the smallest census
tracts of roughly 500x500m (the basic spatial data unit) without losing any information. Each
grid cell and the data it contained was GIS-joined to its corresponding census tract. In multi-
cell tracts, data were divided proportionately across cells. ăe most extensive metro area data
sources were the 1995 national census and the 1996 national travel survey. Large amounts of
data from these sources were imported directly into the model’s databases. We modiđed the
estimation procedure for the location choice models and for the estimation of land values and
improvement values to meet the data available. Initially, land and improvement values were
based on sample of 1000 residential, industrial and commercial property transactions made
available by the Israel LandAdministration. Weused an inverse distance interpolation function
to generate values for the whole metro area. Over time, we acquired more data and substituted
real for synthetic values. For the household and jobs location model, in the absence of sample
data, we used Monte Carlo sampling to generate data for 5000 households and jobs on which
to run the estimations.

6 Simultaneous Estimation: Empirical Results

ăis section compares standard UrbanSim practice of estimating individual models for land
prices and developer behavior (old) with the simultaneous estimation (new) of these twomod-
els. ăe parameters from each type of estimation are incorporated into the UrbanSim system.
Residential and non-residential building densities and land values for the years 2001, 2010, and
2020 are simulated using both methods. ăe land price model regresses the natural log of land
prices on accessibility measures, gridcell attributes, characteristics of the surrounding area, and
developer behavior using OLS. ăe developer behavior variable represents the various possi-
ble land conversions (intensiđcation of existing development, transitioning to some other land
use, or no further development). In UrbanSim, these are deđned by 25 development types that
refer to different levels of intensity of development for residential, mixed-use, commercial, in-
dustrial, and governmental land uses. In our model, while over 30 different transitions were
recorded in practice, we estimated 20 different forms of conversion.

ăe developer model is a probit regression run for each type of development transition.
ăe probability of conversion is estimated as a function of land values, accessibility and prox-
imity variables, market conditions such as vacancy rates, and gridcell characteristics. It should
be noted that due to the many forms of land conversion, some models have very few (< 50)
cases. In addition, some combinations of conversion could not be estimated due to technical
issues such as independent variables predicting the outcome perfectly, lack of variation in the
dependent variable, or singular variance matrices that prevented the program from calculating
true t-statistics.

We present an illustrative empirical simultaneous estimation for two conversion models—
namely, developer behavior of the “no change” variety (from residential development to no
further development) and the more likely case of land conversion from vacant developable to
low-density residential status. We discuss thes results and progress from there to aggregate Ur-
banSim simulations for residential and non-residential densities and land values for the three
time periods. Aĕer that, we disaggregate the simulation and present results for some of the
largest towns within the metropolitan region. Finally, we validate the results against indepen-
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dent data, comparing our simulated results for 2001–2003 with real observed data for those
years.

We illustrate this method using an UrbanSim (version 3) model calibrated for the Tel Aviv
metropolitan area. We look at both non residential and residential densities and land values for
the period 2001–2020. Our results for non-residential development show that using a simulta-
neous approach, non-residential development starts later but reaches more extreme values and
makes for accentuated suburban non-residential development, more extreme values in non- res-
idential land prices and a less smooth price gradient

For residential development we đnd that simultaneous estimation predicts more popula-
tion deconcentration, residential land values are estimated to be higher in suburban locations
than in the CBD. Individual estimation gives the opposite picture: higher residential prices
closer to the CBD. Our conclusions discuss the meaning of the observed increased volatility in
results induced by simultaneous estimation.

6.1 Simultaneous Estimation

We present two illustrative examples of the P2SLS results for land conversion. Table 1 shows
the results for the probability of residential land not undergoing any further development. Ta-
ble 2 shows the estimated results for the more probable case of vacant developable land being
converted into low density residential development.

In the đrst case (Table 1), land prices are positively related to the relative density of both
residential and commercial development (number of units) implying some scale effects, dis-
tance from a highway and the existence of mixed use development. Land prices are also posi-
tively inĔuenced by developer behavior. ăey are inversely related to distance from the CBD
and percentage of water coverage in the area. Finally, the number of other nearby residential
units and the development of large scale residential projects would seem to depress land prices.
ăe developer decision to discontinue further residential development is positively related to
the amount of similar and mixed-use development in close proximity. ăis behavior is also in-
versely related to the size of any future development and to proximity to a major highway, and
is negatively affected by recent transitions of the same type of development nearby. Land prices
show a negative but insigniđcant effect on this behavior. All told, these results are generally as
expected. Wemight have expected that land prices positively reinforce developer behavior (de-
velopers build where prices are expected to be high) but our model cannot conđrm this. Our
model does, however, show that land prices are themselves positively inĔuenced by developer
expectations returns to their actions. In addition the fact that prices drop offwith distance from
the CBD and increase with respect to relative density of development is in line with standard
urban economics models (e.g. Fujita 1989; Mills 1972).

In the second case (Table 2), land prices are (as expected) driven by developer behavior and
by the existing number of residential low-density units. ăis plausibly implies that low-density
residential development attracts more of the same. Land prices are also inversely related to dis-
tance from the CBD (as expected) and to the density of residential units (of all kinds) in the
immediate vicinity. ăus, dense residential development would seem to depress low-density
residential prices. Overall, this land price model based on only a few signiđcant explanatory
variables has limited explanatory power. ăe probit estimation for vacant land being converted
into low-density residential development suggests that while land prices have the right sign,
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Table 1: Simultaneous estimationof landprices anddeveloper behavior (land conversion from residential
to no further development.

ln Land Prices
Developer Behavior 2− (−1): Residential –
No Further Development

Constant 12.43** Constant 4.113*
Developer behavior 0.541* ln land prices −0.1300
Travel time CBD −0.00253** Access to arterial hwy. −0.5499*
Percent water −0.00710** Recent transitions to resid.

(walking dist.)
−0.58853

ln resid. units walking dist. −0.0808** Recent transitions to same
type (walking dist.)

−1.4915**

ln distance highway 0.0468** Percent mixed use (walking
dist.)

0.5465*

ln commercial m2 0.0199** Percent same type cells
(walking dist.)

0.01518*

Residential large-scale −2.377** ln resid. units −0.8216**

−2log likelihood — −57.634
N 2919 238
R2 0.73 —
LR χ 2 — 214.5 ***

*** p < 0.000; ** p < 0.001; * p < 0.05

their effect is not signiđcant. ăe scale effect shows up as positive, indicating mimicking be-
havior. However, the model also gives mixed signals with respect to the effect of changes in the
immediate vicinity on developer’s decisions. On the one hand, past behavior (recent transitions
to residential development) seems to be a key to the present and exerts a positive effect. On the
other hand, recent transitions at the gridcell level seem to have the opposite effect.

6.2 Residential and Non-Residential Metropolitan Land Use Change 2001–2020

We now compare simulated land use change for the years 2001, 2010, and 2020 (base year
1995) using individual estimation (old) and simultaneous estimation (new). We do this for
both residential and non-residential land use. Rather than present the aggregate picture for the
whole metropolitan area, we have chosen to present the results across a northwest-southeast
transect of the area that takes in the inner city (Tel Aviv), intermediate ring (Petach Tikva and
Rishon Leziyon), and suburban (Modiin) sections of the metropolitan area.

Turning đrst to residential density change (Figure 3), we can see that simultaneous esti-
mation predicts more population deconcentration than individual estimation. Both methods
predict that the trend of residential sprawl will intensify, but the trend is stronger under the si-
multaneous approach. ăe area between the intermediate ring (Rishon Leziyon) and the outer
suburbs (Modiin) is predicted to đll in. In the case of residential land values, the simultaneous
estimation gives higher values in suburban locations than in the CBD. Over time, suburban
residential land values are predicted to increase. In contrast, individual estimation gives an op-
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Table 2: Simultaneous estimation of land prices and developer behavior (24–2): Vacant developable –
residential (low density).

ln Land Prices
Developer Behavior (24-2): Vacant
developable – residential (low density)

Constant 11.56** Constant −2.766
Developer behavior 0.665** ln land prices 0.026
Travel time CBD −0.0066** Recent transitions to resid.

(walking dist.)
0.625*

Percent water −0.0015** Recent transitions to same type
(walking dist.)

−1.101**

ln resid. units walking dist. −0.0359* Percent residential (walking
dist.)

0.017

ln resid. units 0.0337* Percent same type cells
(walking dist.)

0.018*

ln resid. units 0.468**

−2log likelihood — −40.177
N 2696 315
R2 0.25 —
LR χ 2 — 58.5 ***

*** p < 0.000; ** p < 0.001; * p < 0.05

posite picture with values in the suburbs (Modiin) staying relatively lower than those in the
CBD and in intermediate locations (Petach Tikva and Rishon Leziyon). ăis pattern also in-
tensiđes across the metropolitan area over the three time periods (Figure 4).

For non-residential land use, we đrst observe changes in the density of commercial areas
(Figure 5). Both methods of estimation show increasing suburban density implying employ-
ment sprawl that accompanies residential sprawl. However the simultaneous estimation shows
this development starting later and reaching more extreme values by 2020. ăus, while both
methods describe similar trends, the simultaneous estimation method predicts stronger subur-
ban non-residential development. For example, commercial density in suburban Modiin for
2020 is predicted to be two to đve times higher using the simultaneous approach. Turning
to non-residential land values (Figure 6), we can see that the simultaneous estimation predicts
more extreme values in non- residential land prices and a less-smooth price gradient from the
CBD. In contrast, the individual estimation method predicts a trend of increasing land price
dispersion across the metropolitan area interspersed with the emergence of new sub-centers of
non-residential activity.

In sum, a clear pattern seems to emerge when comparing the two methods. ăe simultane-
ous approach tends to predictmore extreme outcomes andmore volatile trends. ăe individual
estimation approach tends to produce a smoothing effect on the outcomes, with more consis-
tent patterns emerging over time.
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Figure 3: Residential density (persons per grid cell), 2001–2020.

6.3 Disaggregated Results

We now present results for the leading local authorities within the Tel Aviv metropolitan area,
again comparing the predicted incremental change (∆) attributable to the new method over
the old one. ăis is done for the seven of the largest cities whose population sizes range from
75000 (Raanana) to nearly 400000 (TelAviv). ăese cities are also distributed across thewhole
metropolitan region avoiding any localized clustering effects (Figure 3). We present results re-
lating to households and gridcells.

In relation to the former, we observe change in the number of households and average
household income (Table 3). ăe simultaneous estimationmethod offers more volatile estima-
tions of household income for some cities ranging from10–20percentmore over the short term
(2001). ăese results seem to stabilize over the longer term (2020), at which time the differ-
ence between the two estimation methods ranges from−1 to+3 percent. For the number-of-
households variable, simultaneous estimation again generally yields higher outcomes (positive
∆’s) but these are of lower magnitude and more stable over time than estimates for household
income.

When observing the changes in attributes of grid cells due to the two methods of estima-
tion, we can note that the∆ values for non-residential cells (units, area) are muchmore volatile
than the ∆ values for residential cells. ăis supplements results that we found in the previ-
ous section ( 6.1) at the metropolitan level where non-residential land values were also more
accentuated than residential values. In the present case, the values of the estimated change in
commercial land use under the twomethods, range from three percent to 65 percent across the
different cities and this difference tends to increase over time for all cities rather than narrow
(Table 4).
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Figure 4: Residential land values, 2001–2020.

Table 3: Differences in household attributes due to two methods of estimation (percentage change).

Avg. Household Income Number of Households

City ∆ 2001 ∆ 2010 ∆ 2020 ∆ 2001 ∆ 2010 ∆ 2020

Ra’anana 0 1 1 1 5 5
Petah Tikva 12 −2 1 0 2 2
Netanya 2 −4 2 2 1 1
Rehovot 10 2 −1 −1 2 2
Rishon Leziyon 20 2 0 0 1 1
Ashdod 9 11 1 1 2 2
Tel Aviv 5 1 3 3 1 1

ăe change in grid cells for residential land use is measured in twoways. We look at change
in the number of residential units (Table 5) and change in the share of grid cells dedicated to
residential land use (Table 6). In the former case, simultaneous estimation yields results similar
to independent estimation with a tendency to estimate slightly less units (negative∆) in some
of the cities in the short run. Over the long term, this under-estimation switches to a slight over-
estimation. In the case of estimating the share of residential land, simultaneous estimation yields
consistently large and negative differences comparedwith independent estimation for 2001. By
2020, the difference between the estimates has closed to a great extent. For the cities north of
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Figure 5: Density of commercial development (m2), 2001–2020.

Table 4: Differences in grid cell attributes: estimated commercial land use (percentage change).

Commercial Land Use (m2)

City ∆ 2001 ∆ 2010 ∆ 2020

Ra’anana −18 −4 0
Petah Tikva 27 39 43
Netanya 3 18 20
Rehovot 37 38 37
Rishon Leziyon 25 45 52
Ashdod 31 52 65
Tel Aviv 9 16 15

Tel Aviv, ∆ become slightly positive by 2020. However, for the cities in the southern part of
the metropolitan area (Rehovot, Rishon Leziyon, Ashdod) simultaneous estimation still yields
negative∆ values. In general, simultaneous estimation predicts that cities south of Tel Aviv will
gain much more in non-residential units than in residential units with all the implications for
đscal independence that this implies.
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Figure 6: Non-residential land values, 2001–2020.

Table 5: Differences in grid cell attributes: number of estimated residential units (percentage change).

Residential Units

City ∆ 2001 ∆ 2010 ∆ 2020

Ra’anana −2 2 4
Petah Tikva 0 1 3
Netanya 0 1 2
Rehovot −1 0 0
Rishon Leziyon −2 0 0
Ashdod 0 1 1
Tel Aviv 0 1 1

6.4 Validation of the Results

ăe fact that simultaneous estimation produces estimates that are consistently larger or smaller
than those produced by individual estimation is to be expected. Obviously, there will be more
“noise” in the simultaneous estimation due to the use of đtted values (for example, for developer
behavior in the land price model). In the absence of true BLUE estimation, goodness of đt in
the simultaneous model is going to be less robust. However, the forecasts of the simultaneous
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Table 6: Differences in grid cell attributes: share of residential land use (percentage change).

Fraction Residential

City ∆ 2001 ∆ 2010 ∆ 2020

Ra’anana −23 5 5
Petah Tikva −9 5 5
Netanya −6 2 2
Rehovot −17 −2 −2
Rishon Leziyon −19 −1 −2
Ashdod −8 −3 −4
Tel Aviv 0 1 1

model are less likely to be biased. ăis results in forecasts that are consistently greater or smaller
than those of the individual estimation.

A comparison of coefficients across the two estimation methods highlights this difference.
For example, comparing the coefficients for the land price model in Table 1 with those esti-
mated under individual estimation reveals that nearly all the coefficients are greater in the for-
mer (Table 7). As noted earlier (section 6.2) simultaneous estimation results in higher values
overall, and also in higher values in suburban locations than in the CBD. While distance from
the CBD is inversely related to land prices in both forms of estimation, its coefficient value is
much larger in the case of individual estimation. ăis contributes to our đnding that land prices
under individual estimation show a different pattern with higher residential values closer to the
CBD (Figure 4) and lower values in the suburban areas.

Table 7: Comparison of estimated coefficients for land price model (land conversion from residential to
no further development).

Estimation Method

City Simultaneous Individual ∆

Constant 12.433 10.933 1.500
Travel time CBD −0.002 −0.026 −0.024
ln resid. units 0.104 0.026 0.078
ln commercial m2 0.019 0.007 0.012
Mixed use 1.477 0.170 1.307

Just how well do our simulated results, estimated either individually or simultaneously,
match reality? As a test, we compare observed real data for 2002–2003 with our simulated re-
sults. ăis is done for four key variables for which CBS data exist at the city level: population,
number of residential units, employment, and commercial Ĕoor space. Actual data is compared
with simulated data for a series of medium-sized cities in the metropolitan area. For three of
the four variables (population, employment and residential units) the estimates are close to the
actual data. Figure 7 shows the ratio of actual to estimated population for đve cities, 2002 and
2003. While both estimates are within the 80–100 percent range of the actual data, the si-
multaneous estimates are consistently larger than their individual counterparts. In the case of
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residential units, both types of simulation tend to overshoot the actual đgures by 10–30 per-
cent for the selected cities. In 2002, the simultaneous estimates are consistently higher than
the individual estimates whereas in 2003 they are roughly equal (Fig 8). Employment đgures
are notoriously difficult to simulate. ăe UrbanSim estimates provide estimates that are in the
range of 80–100 percent of the actual data for bothmethods with no over-shooting (Figure 9).
ăe simultaneous method is consistently closer to reality than the individual method which
yields more conservative estimates. Finally, the estimates for commercial Ĕoor space are gen-
erally weak. For four cities, the predicted đgures are within the 70–100 percent range of the
actual but for the other four, they are around 50 percent. In general, the results for this variable
are volatile with no clear pattern emerging (Fig 10).

Figure 7: Actual versus estimated population, 2002 & 2003, select cities.

7 Conclusions

ăis paper has dealt with a focused issue relating to the UrbanSim approach to land use-trans-
portationmodeling. Wehave shown that behavior of twohitherto individualmarkets (develop-
ers and buyers) can be modeled as operating simultaneously. In addition, we have highlighted
the difference that this behavioral interdependence makes to simulations over long and short
terms. Inter alia, this has led to a discussion of the issues of endogeneity, identiđcation, and
dynamics in land use modeling. Strictly speaking, the behavioral approach advocated here fea-
tures land users rather than land uses. ăe aggregate actions of land users results in land use
change. ăis perspective does not focus attention on proactive agents of land use chang such as
transportation systems.



        ()

Figure 8: Actual versus estimated residential units, 2002 & 2003, select cities.

Figure 9: Actual versus estimated employment , 2002 & 2003, select cities.

In contrast to land uses, the behavior of land users is riddled with endogeneity. ăere are
two main sources for this, one temporal and the other spatial. On the temporal side, previ-
ous behavior inĔuences the present. Because time is unidirectional, one might think that only
past behavior inĔuences the present. However, future expectations must be considered as well.
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Figure 10: Actual versus estimated commmercial Ĕoor space, 2002 & 2003, select cities.

Both developers and buyers condition their behavior on expected utility or returns. Space also
presents various challenges, commonly referred to as “spillovers.” Behavior can be inĔuenced by
neighbors on all sides and from all directions. ăus, unraveling the effect of interdependence
on the behavior of agents is a complicated matter. ăe issue is also acute when dealing with be-
havior that directly impacts land use. ăe interdependence between choosing a place of work
and a place of residence is a well-known case in point.

In the current environment of land-usemodeling, a variety of paths are being taken, includ-
ing spatial interaction modeling, cellular automata, rule-based modeling, agent-based model-
ing, and microsimulation (Felsenstein et al. 2007; Koomen et al. 2007). For the more mecha-
nistic of these approaches, inter-dependence is not an issue. However, for the more behavioral
approaches in which developers, households, and workers are the agents of change, interdepen-
dence is obviously a key issue. A future challenge for injecting further realism into the sub-
models of UrbanSim would call for the incorporation of both spatial and temporal spillovers.
In the case of the former, this means a more explicitly spatial econometric approach to model
estimation in order to account for spatial dependencies in both the error and autoregressive
components of the model. With respect to the temporal dimension, the challenge would seem
to be coping with the non-stationarity inherent in much of the data driving UrbanSim. ăis
means dealing with the unit roots and cointegrating processes behind the different data series
underpinning the model. Incorporating these two together presents an exciting challenge for
future research.
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