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Abstract: One of the major critiques of land use-transport interaction (LUTI)
models over the ages has been their over-dependence on individualized soware
and context. In an effort to address some of these concerns, this study proposes a
framework to construct “virtual cities” that can act as sandboxes for testing dif-
ferent features of a LUTI model, as well as provide the capability to compare
different LUTI models. We develop an approach to translate any prototypical
transportation infrastructure network into a plausible land use zoning plan and
synthetic population that are suitable for spatially detailed LUTI microsimula-
tion of the virtual city. Disaggregate units of spatial geometry, like parcels and
postcodes, are generated using geospatial techniques applied to the transporta-
tion network. Households and jobs are randomly sampled from an actual city,
and allocated in the virtual city based on matching density gradients. Students
arematched with schools andworkers arematched with jobs to complete the cali-
bration of a synthetic population for the virtual city. Following the adjustment of
behavioral models to complement the reduced scale of the virtual city, we demon-
strate the integration between the land use and transportation simulation compo-
nents in our LUTI model, SimMobility. e benefits of faster convergence times
and shorter simulation times are clearly demonstrated through this exercise. We
hope that this study, and the open-source releases of the SimMobility soware
with the virtual city database, can accelerate experimentation with LUTI mod-
els and aid the transition from individualized LUTI models to a common shared
integrated urban modeling platform.
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1 Background

1.1 A brief history of LUTI models

Transportation networks and land use patterns are known to mutually influence each other, and drive
spatial socio-economic processes (such as development and migration) in cities. Accessibility, which
forms a bridge between mobility and land use, is a crucial element in shaping patterns of residential
location, and urban and regional development (Hansen 1959). Based on Hansen’s seminal work, the
first generation of land use-transport interaction (LUTI)models came about in the late 1960s, with an
aim to better inform transportmodels in reducing congestion. Although spatial interactionswere cap-
tured through gravity-based measures, the primary focus of these models was to improve the forecasts
of trip origins and destinations. Examples of first-generation LUTI models include the Metropolis
model (Lowry 1964), and ITLUP (Putman 1974). Unfortunately, these models le a lot to be de-
sired, with their mechanicalness, theoretical shortcomings, data-hungriness, and complexity (among
other limitations) being harshly criticized in a review of large-scale models by Lee (1973).

e emergence of new theoretical frameworks in the fields of econometrics and behavioral eco-
nomics (such as the random utility theory) in the mid-1970s enabled modeling disaggregate behavior
by focusing on the prediction of choices amongmultiple discrete alternatives. Applications such as the
choice of travel mode (Lerman 1976) and residential location (McFadden 1978) provided the impe-
tus for the second generation of LUTI models. e field branched out into two different directions
at this time, based on the method by which spatial processes were represented. e first approach was
to use regional economicmodels that focused on a framework to represent trade flows between differ-
ent economic sectors. Examples include TRANUS (de la Barra 1989), MEPLAN (Echenique et al.
1990), and PECAS (Hunt andAbraham 2005). Contrastingly, the other approach sought to improve
the scale andmethod of representing housing transactions and landmarkets, as can be seen inMUSSA
(Martinez 1996) and DELTA (Simmonds 1999).

e third generation of LUTI models was driven by transformative technological advances with
significantly greater computational resources andpower coupledwithmore efficient data storage. Cell-
based models of temporal urban change and spatial evolution, such as SLEUTH (Clarke et al. 1997),
came into prominence at this point. In particular, agent-basedmicrosimulation became (and remains)
a popular choice for constructing state-of-the-art LUTI models that could represent urban regions
at a disaggregate level, wherein individuals, households, firms, and developers could be represented
as agents. e early 2000s witnessed the development of three LUTI models - UrbanSim (Waddell
et al. 2003), ILUTE (Salvini andMiller 2005), and ILUMASS (Strauch et al. 2005) - that successfully
implemented the agent-basedmicrosimulation approach, and remain active in pursuing improvements
to modeling structure and agent representation to the present day. Interested readers may refer to
Iacono et al. (2008) for a more detailed comparative review of these LUTI models.

1.2 LUTI models for uncertain futures

While technology and computation power have improved by leaps and bounds over the last decade,
LUTImodels have yet to capitalize on the potential for amore holistic and generalizablemodeling ap-
proach. In a recent review,Miller (2018) urges the community to go beyond “mere” land use-transport
interactions, and aim for a “system of systems” representation of urban regions. Technological and be-
havioral trends have changed drastically, but none of these new developments have been adequately
dealt with by most urban models (Wegener and Spiekermann 2018). e need of the future is to
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develop integrated urban models (IUMs) that can remain useful as policy analysis tools in light of
potentially disruptive technologies, environmental phenomena (such as climate change and natural
disasters), public health crises (such as epidemics and pandemics), and socio-demographic processes
(likemigration and geriatric trends). Miller (2018) goes on to suggest that IUMs of the futuremust be
fundamental in their behavioral foundations and flexible in their methodological and computational
implementations to be “agnostic” modeling environments.

In a recent review of LUTI models with an eye towards their appropriateness for an automated
future,Hawkins andNurulHabib (2019) argue that operational LUTImodels were largely developed
during a period of relative uniformity in mobility choice sets, and are unenthusiastic about the useful-
ness of such models in the shared mobility era. More general concerns about the inability of LUTI
frameworks to appropriately model emerging trends such as peak car or the impact of information
and communication technologies (ICTs) on activity-travel patterns have also been raised (Van Wee
2015). Two major challenges that plague LUTI models are the integration of activity-based travel
demand models and appropriate measures of accessibility (Acheampong and Silva 2015). Addition-
ally, a recent review by Lopes et al. (2019) highlights how currently operational LUTI models do not
adequately recognize all mutual interactions between activities, land use, and transport.

A combined team from MIT and the Singapore-MIT Alliance for Research and Technology has
been pursuing the development of a state-of-the-art agent-based microsimulation LUTI model (Sim-
Mobility - Simulation of Future Urban Mobility) built on underlying activity-based discrete choice
models of travel behavior. Considering land-use, transportation and communication interactions,
SimMobility can be used for a variety of applications, including implementation of intelligent trans-
portation systems, estimating vehicular emissions, evaluation of alternative future scenarios, and gen-
eration of innovative policy and investment strategies (Adnan et al. 2016). is project was initi-
ated in 2010, and is still under active development, which gave us the opportunity to address some of
the aforementioned concerns from the LUTI modeling community. Our recent efforts demonstrate
how SimMobility can be used to understand the impact of automated mobility on housing-mobility
choices (Basu and Ferreira 2020b; Basu and Ferreira 2020a), private vehicle ownership (Basu and Fer-
reira 2020c), and the future ofmass transit (Basu et al.2018a), in addition to highlighting the potential
for sustainable mobility futures (Oke et al. 2019).

1.3 The need for sandbox virtual cities

Almost all LUTImodeling activity has occurred in the Americas and Europe, e.g., ILUTE inCanada,
UrbanSim in the US, MUSSA in Chile, ILUMASS in Germany, and PECAS in the UK, Canada,
and California. While being driven partially by funding sources, this phenomenon has also led to
LUTImodeling frameworks being overly dependent on particular contexts and sowares. Due to this
shortcoming, there are limited opportunities to evaluate the replicability, transferability, and general-
izability of LUTImodels. e ambitious ISGLUTI project in the 1980s tried to address some of these
concerns by comparing the transferability of operational LUTI models at the time, but fell short of
encouraging the development of a shared testing platformor study area (Webster andDasgupta 1991).

Our own experiences in developing SimMobility build upon their efforts and echo the sentiments
expressed by Miller (2018) that call for a “virtual lab” where researchers can use common tools and
shared datasets within an agnostic modeling environment. Although this is a useful step towards the
“virtual lab” ecosystem, issues of verification and validation still remain. A common testing ground,
or a “virtual city”, might help alleviate these concerns. We recognize that LUTI models oen require
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very detailed disaggregate data, most of which are oen proprietary to maintain privacy. erefore,
creating a virtual city as an open-source sandbox for LUTI models can help accelerate the vision of
collaborative and transferable research in this domain.

Moreover, LUTI models oen involve months, if not years, of effort directed towards data clean-
ing and preparation. In a comparison of LUTI models employed by small and mid-sized urban plan-
ning agencies, Clay (2010) reports that the average time spent on model development is around three
years with costs going up to as much as $750,000 per year. An open-source virtual city can help LUTI
modelers test their frameworks without having to invest as much time, effort, and monetary resources
in model setup.

Drawing from the typology of models of cities for planning proposed by Batty (2007), we postu-
late that a virtual city should be constructed with a digital iconic representation of a hypothetical city’s
transportation infrastructure, which should be further augmented using a symbolic representation of
people and places resembling an actual city. Similar efforts to construct virtual spaces, which are pri-
marily motivated by privacy concerns, are commonly seen in the domain of infrastructure security.
A particular example is Micropolis, a virtual city of 5,000 residents, which was used to simulate the
spread of fires on electricity networks (Bagchi et al. 2009) and water demand networks (Brumbelow
et al. 2007). In the urban planning domain, simulations of virtual urban spaces have been used ma-
jorly for educational purposes or as commercial games. Specific examples include Community Land
Use Game (CLUG) by Feldt (1972), CityDev (Semboloni et al. 2004), SimCity (Adams 1998), and
Second Life (Warburton 2009). However, to the best of our knowledge, there is a gap in the literature
related to the formulation of a methodology for construction of virtual cities, as well as case studies of
usage of such virtual cities for testing LUTI models.

e major contribution of this paper is a methodological framework for the construction of a
virtual city as a sandbox for testing LUTI models. Based on the aforementioned guidelines, we begin
with ahypothetical transportationnetwork and construct the virtual city basedonplausible judgments
about land use constraints and judicious sampling of population and job data from an actual city. It is
worth noting that the specific virtual city we showcase is calibrated using data from Singapore, there-
fore it can serve only to compare different LUTImodels (e.g., SimMobility andUrbanSim). However,
our methodological approach can be easily used to create several other virtual cities using data from
possibly any city in the world. Having access to multiple virtual cities would allow the community
to evaluate the transferability of a particular LUTI model, e.g., we could compare the performance of
SimMobility across a variety of typological virtual cities that have been created using data from various
“real” cities from around the globe.

It is worthmentioning that the literature is quite rich regarding the construction of road networks
(omson andRichardson 1995) and transit networks (Derrible andKennedy 2011) using graph the-
oretical and network science approaches, butwe could not find an example of constructing a fully pop-
ulated and functioning city using the transport network. e remainder of the paper is structured as
follows. e next section outlines themethodology for the virtual city construction, while the follow-
ing section provides details about the use of this virtual city in testing our LUTImodel (SimMobility)
in addition to providing simulation results. e final section of the paper provides concluding remarks
and outlines directions for future research efforts.
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2 Methodology

We will first describe the data inputs that are required for the virtual city construction, i.e., a detailed
transportation network and a land use zoning plan. e following sub-section will outline how dis-
aggregate spatial units, such as parcels and postcodes, are generated based on these data inputs. We
will then describe how populations of individuals, households, housing units, and jobs are randomly
sampled from an actual city, and appropriately allocated inside the virtual city. Next, the assignment
of households to housing units and individuals to jobs is outlined. Finally, the land use and trans-
portation components of the LUTI model are connected in order to determine converged accessibil-
ity measures consistent with the initial deployment of residents and jobs across the virtual city. At this
point, the LUTI model is ready for simulating urban futures in the virtual city.

2.1 Data requirements

e virtual city construction framework requires two basic data inputs: (a) a detailed transportation
network suitable for microscopic transport simulation, and (b) a zoning plan sketching land use char-
acteristics and constraints. In the construction of this virtual city, we take a certain element of creative
liberty in designing both requirements in tandem (as they should be), e.g., providing adequate transit
stops in residential suburbs and the downtown core. We would like to highlight that this is not the
only way to do so, and modelers might even create a virtual city to resemble a scaled-down version of
an actual city. It is also plausible to expect that the transport network is exogeneously provided by a
transport planning agency, and we (as urban planners) would then need to define only a zoning plan
that is expected to adequately complement the provided transport network.

Two major approaches to constructing a virtual transport network are discussed in the literature.
e first approach is to use latent space models to graph the network topology of cities (Zhou et al.
2015), but it requires knowledge about the underlying nodes, or intersections, of the city as a data in-
put. e second approach is arguablymore popular and easier to implement because it is based on rules
set by the modeler. Sun et al. (2002) used a rules-based approach that used buildings, population den-
sities, and disallowed zones as inputs and provided a road network as an output. Vitins and Axhausen
(2010) defined ‘network grammars’ that were effective in defining rules-based approaches and evaluat-
ing what hierarchies within cities look like. Weber et al. (2009) provided a comprehensive rules-based
method of generating virtual cities for use in video games and other applications. eir approach can
be lauded for being generative and temporal, i.e., the city starts out from a specified central node and
permeates outward from there, creating new nodes and edges at a given rate. However, this has been
critiqued for requiring significantly large processing times, since the level of detail is extremely disag-
gregate (e.g., the degree of each intersection). Vanegas et al. (2012) proposed an approach that created
smaller urban parcels based on land-use, which can be effective for filling a grid of street networks into
areas where their requirement is known ahead of time, e.g., in the sub-division of a neighborhood.

Despite the presence of fairly substantial literature in this domain, the lack of a generalizable
methodology that can construct both road and transit networks based on land use is apparent. Sim-
ilarly, there is a gap in the literature with respect to the construction of an appropriate zoning plan
based on given transport networks. We adopt the latter as one of the motivating research questions
for this study. We develop a rule-based approach to adding plausible land use patterns and residen-
tial/employment distributions to exogenously specified transportation infrastructure. is is done in
a manner that retains certain spatial and demographic characteristics of an actual city, such that the
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virtual city can be a useful sandbox for experimenting with different LUTImodels that use behavioral
models calibrated for a real city.

A hypothetical road network, which spans 290 kilometers, is shown in Figure 1(a). e road net-
work data includes both node information (such as number of turns, number of edges, etc.) and edge
information (such as number of lanes, maximum speed, capacity, etc.), which can enable its use in a de-
tailed trafficmicro-simulation. Based on the road design, we also construct a hypothetical bus network
comprising bus routeswith72distinct stops (see Figure 1(b)), and ahypotheticalMRT/subway/metro
network comprising eight stations (see Figure 1(c)). e transport infrastructure motivates the cre-
ation of 24 Traffic Analysis Zones (TAZs), each of which covers an area of 4.1 square kilometers on
average, as shown in Figure 1(d). e virtual city is thus designed to span a total area of about 100
square kilometers. Overall, these specifications can be assumed to have been provided by a hypotheti-
cal transport planning agency.

(a)Road network (b)Bus network

(c)Mass Rapid Transit (MRT) network (d)Traffic Analysis Zones (TAZs)

Figure 1: Transportation network in the virtual city

For the transport infrastructure provided in the virtual city, we assume that the region has amono-
centric urban morphology. e land use zoning plan, which portrays the spatial restrictions for allo-
cating residential and work locations, is presented in Figure 2. Based on the monocentric city design,
we place commercial land use in the center of the city. e south-west of the city is designated as
industrial land use, and a few zones between downtown and the south-west are marked as mixed com-
mercial and industrial to provide an appropriate transition. e east of the city is mostly residential,
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Figure 2: Land use zoning plan for the virtual city

with a couple of zones marked as institutional and educational each to represent government offices
and school/university campuses. A couple of zones on the edges of the city are marked as open spaces
(which leaves room for additional development in the future), along with an airport in the south-east
of the city. In a few cases, large TAZs in the suburbs have been broken intomultiple land use polygons
having different land use codes. Some of these constraints are useful in spatially segregating differ-
ent job types (such as manufacturing and industrial vs. office workers), while others provide a spatial
distribution of households and jobs that is plausible for urban micro-simulation.

2.2 Generation of disaggregate spatial geometry

e two data inputs considered thus far are usually provided by different sources, i.e., the transport
planning agency provides the transport network, while the the land use zoning plan is under the
purview of the urban planning (or regional development) agency. Even if well-coordinated across
agencies, the TAZs and land use polygons are too macro-scale to enable vehicle-level simulation of
urban mobility. To take full advantage of state-of-the-art micro-simulation capabilities, it is desirable
to generate spatial zones that are fine-grained enough to be at the block-level so that the synthetic
population can be dispersed with sufficient granularity. e locations where people live and perform
activities are distributed among buildings and land areas, whose locations are generally approximated
by address points and zip codes (or postcodes, in the case of Singapore). Individualsmove among these
zones using the transport network to carry out daily urban activities. epopulation and building data
for a city are generally tagged with such postcodes, and each postcode is associated with a building or
address point location at or near the center of its zonal area. With this in mind, we propose the con-
struction of parcels and postcodes as disaggregate units of spatial geometry.

Although people live and perform activities in buildings, they enter the transport network at var-
ious “entry points” when they need to travel between different buildings or zones. If the locations of
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(a)Entry points into the transportation network (b)Land parcels and postcodes

Figure 3: Generating disaggregate spatial geometry for the virtual city

buildings were known ahead of time, we could assign the nearest nodes of the road network as the en-
try points. However, this is not the case, and we need to work it out in reverse. erefore, we consider
all nodes of the road network, all bus stops, and all MRT stations as possible “entry points” into the
transport network, which are shown in Figure 3(a). We then treat the entry points as seed generators
forVoronoi cells oriessen polygons, which are generated using Fortune’s algorithm (Fortune 1987).
is approach has been used extensively in several geospatial applications, such as measuring rainfall
in an area (iessen 1911), and analyzing the source of epidemic outbreaks (Johnson 2006). ese
iessen polygons can be interpreted as areas that are most likely to be served by each entry point of
the transport network. However, some of these areas were adjusted further for three main reasons.
First, they should not cross TAZ boundaries, therefore we cut areas that did so into multiple smaller
regions to maintain geometric consistency with the TAZ boundaries. Second, we sub-divided large
areas of open space and undeveloped land so that future development could be considered for man-
ageable chunks of land, as is oen seen in the real estate market. Finally, we removed slivers that arose
from these processes of sub-division as they most likely stem from our basemaps (i.e., TAZs, land use
polygons, and iessen polygons) being drawn at different scales and levels of accuracy.

Aer going through the multiple steps mentioned above, the “cleaned”iessen polygons that we
are le with are designated as land parcels. Accordingly, we define postcodes as the centroids of these
resulting land parcels. In this case, the land parcels are at the scale of Census blocks in American cities.
A map of the 175 land parcels and postcodes against a backdrop of TAZs is presented in Figure 3(b).

2.3 Population allocation through density-matching

Aer the generation of appropriately disaggregate spatial geometry, the next step is to populate the
virtual city with households, jobs, and buildings. While it is plausible to arbitrarily create a synthetic
population of such elements, the random spatial distribution of the population might be subject to
critique. ere is strong historical evidence that the long-term evolution of cities is based on transport
network evolution, wherein population density follows transport networks, and consequently, acces-
sibility. Examples of transit-oriented development are found aplenty in Copenhagen (Knowles 2012)
and other European metro areas (Papa and Bertolini 2015), while the post-WWII strategy of Amer-
ican development to prioritize building highways is oen considered as one of the primary causes of
suburbanization and sprawl (Baum-Snow 2007). Based on these findings, we proceed to randomly
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sample the population of households, jobs, and buildings from an actual city (Singapore, in this case)
and allocate them to the virtual city based on transport network density. It is worth highlighting that
there is no reason to favor Singapore over other cities or metro areas at this stage, and the only reason
for our choice is the availability of relevant data at the appropriate level of detail.

Transport network density can be measured in a variety of ways. For example, we could compute
the linear road length within each zone. However, the roads tend to be the boundaries of many of our
zones, which is why we choose to count entry points, comprising nodes from the road network and
public transit stops, close to each postcode (which is where buildings are located) as our measure of
transport network density. We assume the service area of each postcode to be 500meters, because this
represents how far people are willing to walk from urban activity centers at the postcodes to the entry
points of the transport network (Basu et al. 2018b).

e population sampling technique follows a three-step process. First, we compute the number of
entry points that lie within a 500-meter Euclidian buffer of each postcode in the virtual city, and assign
the transport network density for all 175 postcodes. e population and job densities are computed
in a similar manner for all postcodes in the actual city (i.e., Singapore) using the synthetic population
data. Second, the postcodes in Singapore (which represent buildings in dense areas, and blocks in
less urbanized areas) are ranked based on the density measure, and categorized into 175 groups to
correspond with the virtual city postcodes. ird, we select an appropriate sampling rate (10% in the
case of Singapore), based on which households, jobs, and buildings are randomly sampled from the
synthetic population based on the group in which the postcode lies. For example, if the postcodes are
ordered in increasing order of density, 10% of households and jobs will be randomly sampled from the
175th ordered category of Singapore postcodes (i.e., the ones with the highest population densities)
and assigned to the 175th virtual city postcode, which has the highest transport network density.

is process allows us to guarantee that a household residing in a densely populated area in Sin-
gapore is allocated to a virtual city postcode that is located in an area with high density of transport
network “entry points”. e same can be said for jobs as well. Based on this density-matching tech-
nique, we also oversample buildings (housing units) and firms (jobs) to make sure that the virtual city
has a suitable vacancy rate, in keeping with the rate observed in the actual city from which we draw
the population. It is worth noting that a realistic vacancy rate is essential for housing market models
to function properly.

e final element in this stage is to allocate educational institutions to the virtual city. We define
three types of institutions: (a) elementary (i.e., primary or secondary) schools, (b) high schools, and
(c) universities. We use the land use zoning plan to postulate that high schools and universities can
be placed only in areas that are designated as educational land use due to requirements of large spaces.
However, elementary schools can be placed in both educational and residential land use polygons, as
they are more likely to be located near residential clusters. We determined the number of each type of
educational institution based on the same sampling technique used for the population, but using the
density of households with children this time. Using this information and the aforementioned zoning
constraints, we randomly selected a subset of postcodes from the eligible zones and assigned appropri-
ate educational institutions to them accordingly. Finally, we end up with 30 elementary schools, four
high schools, and one university that is spread out over 10 postcodes (which are essentially buildings
in this case). Figure 4 presents the spatial distribution of the educational institutions overlaid on the
land use zoning plan. e completed version of the virtual city is shown in Figure 5.
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Figure 4: Educational institutions in the virtual city

Figure 5: An overview of the completed virtual city

2.4 Assigning workers to jobs and students to schools

While we have successfully created a synthetic population for the virtual city, we have yet to assign
workers to specific jobs and students to specific schools. is “job assignment” process is essential
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for simulating daily commuting in the transport simulator component of LUTI models. Since there
is only one university, it is relatively trivial to assign every student of age 18 years or above to one
of the postcodes in the university. Children, i.e., students below 18 years of age, are assigned to the
school that is closest to their residential location, provided there are enough empty spots. Appropriate
capacities are placed on the schools based on their category, i.e., high schools have a larger capacity than
elementary schools, so it is possible that several students might be going to a school that is second- or
third-nearest to their home. In such instances, our algorithm tried to minimize the total travel time
for students, while respecting school capacity constraints.

Unfortunately, assigningworkers to jobs in the virtual city is not as trivial. A discrete choicemodel
is used for job assignment, wherein accessibility measures form a subset of the explanatory indepen-
dent variables. e alternatives presented by this model are at the TAZ-level, because the transport
simulator usually estimates travel demand and provides origin-destination (OD)matrices at the TAZ-
level. Hence, the attractiveness of a TAZ as a workplace location is assumed to be proportional to a
weighted sum of the number of jobs available in the TAZ and the accessibility that a worker would
experience if they lived in their current housing and had a job located in that TAZ. Interactions of the
accessibility measure with socio-demographic characteristics of the worker and job industry sectors
further enrich the heterogeneity captured by the discrete choice model.

Ideally, we’d like this “fixed home-varying workplace” accessibility to be an activity-based accessi-
bility (ABA)measure provided by the transport simulator, as it captures the expectedmaximumutility
derived by the individual from all possible activity patterns carried out throughout the day (Dong et al.
2006). However, it is not possible to compute these ABAs the first time around, because the initial (or
seed) workplaces of workers are not known. erefore, we use travel skims (i.e., OD matrices of travel
time and cost) pertaining to the transport network as the seed accessibility values to simulate one full
day in the transport simulator and complete one round of job assignment. Now that all workers are
assigned to a workplace (albeit temporarily), we can then leverage the capability of our transport sim-
ulator to compute ABA measures for all workers, and use these values in the job assignment model.
Finally, we repeat the job assignment process based on the updated ABA values, and update the job
location for each worker accordingly.

3 Testing LUTI models for the virtual city

is section provides details on how the virtual city can be explored as a viable study region for micro-
simulation of land use and transport interactions. First, we describe our agent-based LUTI micro-
simulator, SimMobility, and its components. Second,weprovide a framework to assess the accessibility
integration between the housing market simulator and the daily transport simulator using the virtual
city. Finally, we provide empirical results from the simulations and discuss the usefulness of having a
virtual city as a sandbox.

3.1 SimMobility

SimMobility is a multi-scale agent-based microsimulation platform that incorporates time-scale de-
pendent behavioral modeling through activity-based frameworks (Adnan et al. 2016). rough the
consideration of interactions between transportation and land use, SimMobility can be used for a va-
riety of applications ranging from implementation of intelligent transportation systems to evaluation
of alternative future scenarios. SimMobility encompasses three major components:
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• Long-Term (LT): is detailed land use-transport simulator involves the creation of a syn-
thetic population of individuals, households, firms and establishments (Zhu andFerreira 2014).
is is followed by household-level residential location and vehicle availability choices, and
individual-level employment or education location choices. e temporal scale of this com-
ponent ranges from days to years.
• Medium-Term (MT):is component contains a mesoscopic supply simulator coupled with a

microscopic demand (daily activity) simulator (Basu et al. 2018a). Daily travel decisions like
mode choice, route choice, activity-travel patterns, and incident-sensitive (re)scheduling are
considered at the temporal scale of minutes to hours, up to a single day.
• Short-Term (ST): is microscopic traffic simulator involves lane-changing, gap acceptance,

route choice, and acceleration-braking behavior at the temporal scale of seconds to minutes
(Azevedo et al. 2017).

e housing market model, implemented through a daily bid-auction approach, forms the crux
of the LT modeling framework. Households are awakened using pre-computed probabilities (con-
ditional on current tenure status and age of household head) through the awakening model. Next,
the screening model creates behaviorally consistent and computationally feasible choice sets of hous-
ing units that each household could potentially bid on. e hedonic price model provides the esti-
mated market price for all housing units in the study region. rough the willingness-to-pay model,
households then evaluate the expected consumer surplus for each unit in their choice set and compare
against their current residential unit. Finally, households choose to bid on the unit that provides the
maximum expected consumer surplus, provided it is higher than that provided by their current unit.
Aer completing a possible residential relocation, households then re-evaluate their private mobility
holdings through the vehicle availability model. Additionally, individual members of such relocated
households re-consider their job location choices through the job assignment model. While this is the
current implementation of the LT modeling framework in SimMobility, alternative long-term choice
models could be easily swapped in and readily applied to the virtual city constructed from the trans-
portation infrastructure using our technique.

e LT and MT components are connected through activity-based accessibility (ABA) measures
that are disaggregate utility-based measures of the value of alternative daily activity patterns. Simula-
tion of alternative scenarios in MT enables measurement of individual-level ABAs that would result
from participation in those scenarios through logsums. For example, consider an individual living in
the i thTrafficAnalysis Zone (TAZ) andworking in the j thTAZ. It is crucial to evaluate hypothetical
scenarios such as (a) fixed home-variable work, where the individual can choose from all possible TAZs
for their work location while keeping the residential location (TAZ i) fixed, and (b) variable home-
fixed work, where the work location (TAZ j ) is fixed but the residential location is allowed to vary. For
every possible combination of home and work TAZs, MT provides a logsum value for each individual
in the synthetic population. ese ABAs are used as explanatory independent variables in LT models,
in the form of individual-specific logsums in the job location choice model, and household-specific
logsums in the residential location choice and vehicle availability choice models.

3.2 Assessing the LT-MT integration

A “full loop” simulation of the LUTImodel (see Figure 6) is required to assess the LT-MT integration,
wherein LT models are used to obtain a stable equilibrium of housing and job locations, followed by
a stable equilibrium of daily activity patterns in MT. e feedback loop occurs through the synthetic
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population and accessibilitymeasures. LT passes a synthetic population of individuals (whose housing
and job locations, and private mobility holdings are known) to MT, which then simulates one whole
day of travel, based on which accessibilities calculated using the updated transport network costs and
times are passed back to LT. ese accessibilities are then used to recalibrate the synthetic population
by adjusting housing and job locations and private mobility holdings.

Figure 6: Integration of the Long-Term and Medium-Term modules in SimMobility

However, using only one MT simulation might be fallacious because the seed network cost and
time tables come from travel skims provided by the transport planning agency. It would be more pru-
dent to conduct multiple iterations of a “full loop” of day-to-day learning in MT, wherein multiple
days are simulated with each day’s realized travel patterns informing the next day’s network costs and
times. e day-to-day learning can be interpreted as providing more accurate network information to
travelers, who can then make more informed decisions in scheduling their daily activities, not unlike
trip planning tools. We could also include within-day learning, wherein one day is simulated multiple
times keeping the demand fixed and updating the network costs. is can be interpreted as a quasi-
equilibriumof a particular daily activity pattern, which bears some similarity with real-time navigation
systems. However, it is worth bearing in mind that including within-day learning would increase the
simulation time.

In order to evaluate whether equilibrium has been reached, we select two performance measures.
efirst is the normalized rootmean squared error (RMSN) of the link travel time. Since thismeasure
is calculated over every link in the road network, minimizing the RMSN can be thought of as a “local”
optimization of network performance. e root mean squared error (RMSE) at the i th iteration is
given by:

RM SEi ,i−1 =

s∑L
k=1( t̂k ,i − t̂k ,i−1)

2

L
(1)
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where L is the number of links in the transport network; and t̂k ,i is the realized travel time on the
kth link during the i th iteration. Normalizing this RMSE by the travel time during the i th iteration
yields:

RM SNi ,i−1 =
RM SEi ,i−1

t i
(2)

where t i is the mean realized link travel time during the i th iteration. e second performance
measure is the weighted root mean squared error (wRMSE) of zone-to-zone (i.e., TAZ-to-TAZ) car
travel times. Since we aim tominimize thewRMSE for all zones in the study area (i.e., the virtual city),
this procedure can be thought of as a “global” optimization of network performance.

wRM SEi ,i−1 =

√√√√ N∑
k=1

wk · (T̂k ,i − T̂k ,i−1)
2 (3)

where N is the number of origin-destination (OD) pairs at the zonal level in the transport net-
work; T̂k ,i is the mean realized car travel time for the kth OD pair during the i th iteration; and wk is
the normalized weight of the kth OD pair, which is measured as the proportion of trips taken for the
kth OD pair among all N OD pairs. e zone-to-zone travel times are updated between iterations
for both within-day and day-to-day learning loops using the following update rule. While completely
replacing the value might seem tempting, such an approach might cause instability across successive
iterations and require a longer time for convergence. Instead, we use a parametric formula to calculate
the weighted average of themost recent travel time and the second-to-most-recent travel time realized
from the simulation.

T 0
k ,i+1 = α · T̂k ,i +(1−α) · T̂k ,i−1 (4)

whereα ∈ [0,1] is the update weight that can be chosen by themodeler; T̂k ,i is themean realized
car travel time for the kth OD pair during the i th iteration; T 0

k ,i
is the seed zone-to-zone travel time

for the kth OD pair during the i th iteration; and T 0
k ,1

is obtained from travel skims provided by the
transportation planning agency.

us far, we have allocated a synthetic populationwith behaviorally consistent residential and em-
ployment locations to the virtual city, and outlined a framework for obtaining converged accessibility
measures that can act as stable feedbackmechanisms between the LT andMT components of a LUTI
model. A final item of consideration before conducting simulations is to adjust the behavioral models
that include spatial measures as explanatory variables. Behavioral models are usually calibrated using
household travel surveys or real estate transaction data from an actual city. Since the scale of the virtual
city is comparatively smaller, the coefficients for spatial measures such as distances to local amenities,
trip lengths, or population density require adjustment by the modeler to maintain consistency of the
estimated accessibilitymeasures. Likewise, housing prices and other costsmust be expressed in “virtual
city” dollars, not Singapore dollars. Following the implementation of this adjustment process, we are
ready to test our LUTI model for the virtual city.
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3.3 Empirical results

We ran 30 iterations of the “full loop” in MT, where both the demand and supply simulators were
updated at the end of each iteration without within-day learning. When within-day learning was en-
abled, we ran 30 iterations of the “full loop”, where the supply simulator was run five times for each
daily activity pattern generated by the demand simulator. Recall that within-day learning can signifi-
cantly increase simulation time, but can also result in faster convergence due to more supply iterations
being simulated. erefore, empirical results are examined with an eye towards understanding the ef-
fect of the update weight parameter (α) and the usefulness of enabling within-day learning on the rate
of convergence.

ree values of α are selected, i.e., α ∈ [0.2,0.3,0.5], where a higher value of α indicates a greater
weight being placed on the most recent update rather than the seed value. e effects on the RMSN
of link travel times are shown in Figure 7. We find that a lower value of α results in a smoother error
function that converges faster, while a higher value ofα causes the error function to jump around. is
is in line with our intuition, and, incidentally, using α = 0.5 (which is arguably a moderate weight)
leads to theRMSN function failing to convergewithin 30 iterations. Usingwithin-day learning speeds
up the convergence rate, compared to when it is disabled. More importantly, convergence occurs al-
most exponentially faster in terms of simulated days (but not simulation time). e sub-figures show
each value of RMSN at the beginning of each day as a large dot, all of which are connected by straight
lines. e within-day RMSN values are represented by smaller dots, and only exist in the “5 within-
day iterations” case. When α = 0.2, we see that it takes only three days for RMSN to converge when
within-day learning is enabled, in lieu of 14 days without within-day learning. However, it is worth
noting that these three days actually entail three demand iterations and (5∗3=) 15 supply iterations,
while the alternative includes 14 iterations each of demand and supply. erefore, it is possible to ob-
tain significant time savings by using the within-day learning approach, provided convergence occurs
fast enough.

A similar exercise is carried out for the “global” performance metric, i.e., the wRMSE of TAZ-to-
TAZ travel times, as shown in Figure 8. Our observations are mostly similar to those noted earlier. A
lower value ofα provides a faster convergence rate, which is somewhat accelerated by enabling within-
day learning. However, the gains are not as significant in this case. For example, whenα= 0.5, it takes
11 iterations to convergewithoutwithin-day learning, which canbe reduced to9 iterations by enabling
it. It is also worth noting that the PM peak travel times are noisier than the AM peak counterparts,
owing to the PM peak being spread out over a wider period of time and experiencing higher volumes
of total traffic.

e empirical results suggest that the LT-MT integration in our LUTImodel, SimMobility, works
successfully and performs reasonably well for the virtual city. If we were to test this using an actual city
like Singapore, the same exercise would have taken us months, even with the help of multi-threaded
high-performance computing clusters. Apart frommodel testing, the results also highlight the impor-
tance of using within-day learning to obtain a faster rate of convergence, which can result in potential
savings in simulation time. Moreover, the update weight parameter should be set appropriately so that
network costs and times are updated gradually instead of being replaced completely with every iter-
ation. ese insights are useful for modelers who might want to use similar features in their LUTI
models on large-scale urban regions.



       .

(a)α= 0.2 (b)α= 0.3

(c)α= 0.5

Figure 7: Evaluating the effect of the update weight (α) on convergence of link travel times

4 Conclusion

Despite the numerous critiques of LUTI models, they can be useful tools in testing and analysing pol-
icy programs for uncertain future scenarios. However, currently operational LUTI models seem to be
overly dependent on individual soware, proprietary datasets, and specific contexts. In a call to the
LUTI modeling community, Miller (2018) urges for a “virtual lab” ecosystem, where researchers can
work on a single integrated open-source soware with shared data across contexts. Such an ecosystem
can provide numerous benefits, primary of which might be to address the concerns of model gener-
alizability, transferability, and validation. is can even accelerate the evolution of LUTI models to
integrated urban models (IUMs) by including important socio-economic and spatial phenomena in
their consideration of urban regions.

is study provides a step forward in that direction by proposing a framework to create “virtual
cities” as sandboxes for testing LUTI models, which can help alleviate concerns over context depen-
dency. Our approach allows any hypothetical transport infrastructure to be combined with plausible
land use constraints and then translated into a virtual city by distributing residents and jobs in a man-
ner that reflects observed patterns in an actual city. Such a virtual city can be a useful sandbox for
LUTI explorations since it enables the performance of any arbitrary transportation infrastructure to
be simulated using population and employment distributions, and related behavioral models, that are
sampled from real cities and spatially distributed to match observed density gradients.

Geospatial techniques are employed to create disaggregate spatial geometry such as parcels and
postcodes, with additional adjustments keeping future development and consistent spatial boundaries
across layers in mind. In line with literature showing how population density follows transportation
infrastructure density, we allocate households and firms that are randomly sampled from an actual
city (Singapore) through a density-matching technique. Finally, students are matched to educational
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(a)α= 0.2 (no within-day learning) (b)α= 0.2 (5 within-day iterations)

(c)α= 0.3 (no within-day learning) (d)α= 0.3 (5 within-day iterations)

(e)α= 0.5 (no within-day learning) (f)α= 0.5 (5 within-day iterations)

Figure 8: Evaluating the effect of the update weight (α) on convergence of TAZ-to-TAZ travel times

institutions and workers are matched with jobs to construct a calibrated synthetic population for the
virtual city.

We also demonstrate the integration between the land use and transportation simulators in our
LUTI model, SimMobility, using the virtual city. e benefits of using the virtual city to test this
integration aremanifold, including faster convergence rates and shorter simulation times owing to the
virtual city being at a much smaller scale than an actual city. We aim to release an open-source version
of the SimMobility soware, along with the virtual city database, by the end of our project. We also
hope that themethodology suggested in this paperwill allow such virtual cities to bemore easily tuned
to match the behavior and characteristics of populations in different “real” cities. In this case, it will
become easier and more practical to explore differences in LUTI implementations by experimenting
with prototypical virtual cities. In closing, we believe that this study and the open-source releases have
the potential to facilitate greater collaboration and cross-contextual use of a shared research framework
within the LUTI modeling community.
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