
1	 Introduction

Cities face increasing pressure to reduce car dependency, a trend that generates many externalities for 
urban dwellers and threatens sustainability for future generations (Stevenson et al., 2016). Urban plan-
ners are increasingly attuned to land use policy and its potential effect on travel behavior, explicitly with 
the aim of reducing car dependency (Giles-Corti et al., 2016). Therefore, understanding the human re-
sponse to urban environmental attributes and their influence on travel behavior is a relevant and timely 
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Abstract: We propose a method to estimate mode choice models, 
where preference parameters are sensitive to the spatial context of the 
trip origin, challenging traditional assumptions of spatial homogeneity 
in the relationship between travel modes and the built environment. 
The framework, called Spatial Latent Classes (SLC), is based on the 
integrated choice and latent class approach, although instead of defining 
classes for the decision maker, it estimates the probability of a location 
belonging to a class, as a function of spatial attributes. For each Spatial 
Latent Class, a different mode choice model is specified, and the 
resulting behavioral model for each location is a weighted average of 
all class-specific models, which is estimated to maximize the likelihood 
of reproducing observed travel behavior. We test our models with data 
from Portland, Oregon, specifying spatial class membership models as 
a function of local and regional accessibility measures. Results show the 
SLC increases model fit when compared with traditional methods and, 
more importantly, allows segmenting urban space into meaningful zones, 
where predominant travel behavior patterns can be easily identified. We 
believe this is a very intuitive way to spatially analyze travel behavior 
trends, allowing policymakers to identify target areas of the city and the 
accessibility levels required to attain desired modal splits.
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research topic. Today’s sustainability challenges pose an interesting question: Can the built environment 
effectively influence travel choices? 

The literature frequently reports a positive correlation between attributes of the built environment, 
such as population density or accessibility, and the propensity to walk or to use public transport (Ewing 
& Cervero, 2010). However, there is still debate regarding the magnitude of these correlations, which 
depend on the chosen study method, the specification of the models used, the context and location of 
the case of study, or the quality of the data. Moreover, the role played by residential self-selection (i.e., 
households with preconceived travel preferences choosing neighborhoods that best suit their mobility 
habits) is still largely discussed, although several studies indicate that, beyond self-selection, there is a 
causal influence of built environment and land use on travel patterns, especially regarding the propensity 
to walk (Cao, 2010; Lin et al., 2017; McCormack & Shiell, 2011). 

A common approach to understanding the associations between travel choices and built environ-
ment is the estimation of discrete choice models for mode choice (Ben-Akiva & Lerman, 1985; McFad-
den, 1974) where attributes of the built environment are included as explanatory variables. Traditional 
travel models, in practice, usually specify a single utility function for each mode in a whole urban area 
(or in few predefined zones subdividing it), under the assumption that the response to changes in the 
attributes of travel modes does not vary across space within the same area or zone (although it does so 
across different individuals). This approach does not adequately accommodate spatial response hetero-
geneity in the context-specific built environment, therefore limiting the understanding of how the built 
environment influences the choice of transportation modes, despite the extensive and deep literature 
on the topic (Kärmeniemi et al., 2018; Salvo et al., 2018). Considering spatial heterogeneity in the 
modelling approach should allow to better measure the role played by the built environment. Previous 
efforts to address spatial heterogeneity include segmenting the analysis in different urban typologies 
(Choi, 2018; Khattak & Rodriguez, 2005) or defining spatial clusters based on neighborhood charac-
teristics (Salon, 2015). However, these methods are based on ex-ante segmentations of space, with the 
estimation of behavioral (mode choice) models done in a subsequent stage. This approach is less likely 
to correctly capture the interdependence between spatial attributes and other variables explaining travel 
behavior, such as trip attributes or socioeconomic characteristics of users.

This research aims to fill this gap by simultaneously analyzing spatial heterogeneity and behavioral 
(mode-choice) data. The proposed method is based on a discrete choice framework, particularly inte-
grated choice and latent class models (Kamakura & Russel, 1989). The method, applied to the metro-
politan region of Portland, Oregon, allows to segment behavioral models in different classes, each having 
its own probability function. In this application, class segmentation will be based on spatial attributes of 
the location where the trip is originated, particularly accessibility measures. These segmentations char-
acterize a behavioral representation that depends on the location of a trip, where spatial heterogeneity 
is explicitly incorporated through the probability of that location belonging to a Spatial Latent Class 
(SLC). The method innovates by segmenting the space using a suite of (both local and regional) acces-
sibility measures and travel data, allowing for a behavioral-based identification of “neighborhood types” 
which are described by their attributes. This provides a coherent description of urban space in terms of 
the travel behavior patterns that it is likely to induce, which could be a useful and intuitive input for 
policy makers and urban planners.

Beyond interpretability and behavioral consistence of the spatial segmentation that emerges from 
the proposed method, estimation results confirm better model performance when compared with a 
classical multinomial logit modelling approach, where spatial attributes are directly included in the 
utility functions of each mode of transport. The results indicate that certain sociodemographic groups 
may behave differently (e.g., be represented in models with different coefficients) depending on the at-
tributes of their location, something that cannot be captured by spatially homogeneous models. Finally, 
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the method allows to spatially delimitate the areas associated with different mobility patterns and un-
derstanding the levels of accessibility needed to achieve specific travel outputs. To our knowledge, there 
has been no previous experience applying a Spatial Latent Class modeling approach to a multimodal 
travel choice model. 

The remainder of the paper is organized as follows; Sections 2 and 3, detail previous literature 
on spatial heterogeneity and latent class methods applied to spatial segmentation, respectively. Next, 
Section 4 details the methods used in this article, including the SLC approach. Section 5 describes the 
case study and the data. Section 6 shows the result of the estimations, with an emphasis on the spatial 
segmentation generated by the SLC approach. Finally, Section 7 discusses the findings and contribution 
of this work. 

2	 Spatial heterogeneity in travel behavior

The literature often mentions a positive relationship between attributes of the built environment and 
urban travel behavior (Ewing & Cervero, 2010; Saelens & Handy, 2008; Salvo et al., 2018). Although a 
significant correlation has been found in a wide variety of studies, some evidence argues that the magni-
tude of the effect is small (Duranton & Turner, 2018; Stevens, 2017), suggesting that land use interven-
tions could have a limited impact on urban travel patterns. Therefore, the question of how relevant the 
built environment is to shaping preferences remains a concern.

The usual approach to understanding this relationship is to estimate probabilistic travel behavior 
models, most commonly mode choice, with socioeconomic characteristics, travel attributes, and built 
environment measures as independent variables. Modeling approaches tend to assume spatial homoge-
neity, which refers to an estimation with singular coefficients for each measure of the built environment 
throughout a region. A common study approach is the “D system” (Cervero & Kockelman, 1997; Ew-
ing et al., 2009), referring to concepts associated with specific attributes of the built environment, such 
as density of population or employment, diversity of land uses, urban design, accessibility to destination, 
and distance to transit. For example, Stevens (2017), using this approach in a meta-regression study, 
argues that the effect of built environment measures is significantly associated with private Vehicle Miles 
Traveled (VMT) but with a small magnitude effect. 

Several studies have questioned the assumption that relationships between the built environment 
and mode choice follow a unique behavioral response regardless of the context. For example, Lewis and 
Grande del Valle (2019) found that VMT decreases with density, with evidence pointing to a nonlinear 
relationship in the shape of a negative exponential, using the San Francisco Bay Area as a case study. In 
another example, Choi (2018), in a study on Canada, found a limit in the association of density with 
VMT reductions, suggesting that increasing density in central areas, that have reached a certain thresh-
old of population, has no effect on VMT. This is an indicator of the effect of the built environment on 
the elasticities of key variables that affect travel behavior. 

Private vehicle choice and VMT have been found to have a similar associations with the built 
environment, suggesting that those non-linearities would exist when either VMT or car alternative are 
the modeled variable (Salon et al., 2012). In the case of transit, Ding et al. (2021) found that assuming 
spatial homogeneity can lead to inconsistent estimates, and a certain threshold of transit supply should 
be exceeded to be effective. Additionally, they found that densification facilitates transit, but with di-
minishing returns. In a similar vein, but for walking, Tanishita and van Wee (2017) found an upper 
threshold for increasing walking with a population density of around 11,000 people/km2. Also for the 
case of walking, Guimpert and Hurtubia (2018) found that the shape and size of the areas that people 
consider to be part of their usual walking neighborhood are heterogeneous, depending on the attributes 
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of the built environment and individual characteristics. 
Several authors have attempted to incorporate spatial heterogeneity into travel behavior analysis. 

Some approaches have grouped areas that may show similar features of the built environment and per-
formed a spatially segmented analysis. Using normative urban typologies, Choi (2018) found in Cal-
gary, Canada, that intensifying activities in the center of the city would not have any effect on decreasing 
VMT, while increasing densification and transit supply may decrease VMT in other consolidated areas 
outside of downtown. Salon (2015), using ex-ante clustering of space, also found evidence on spatial 
heterogeneity, with total VMT depending on the neighborhood type and marginal effects of built en-
vironment attributes changing in magnitude depending on the neighborhood. Furthermore, Feuillet et 
al. (2018), using a Geographical Weighted Regression, found that walking is also spatially heterogeneous 
in a study over France. Their findings point out that increasing density in already dense cities would 
not increase walking, but that the same change could increase walking in smaller and less dense cities. 
Although these findings support the need to include spatial heterogeneity in the analysis, these methods 
have not considered clustering or spatial segmentation methods based on behavioral outcomes. 

3	 Latent class models for spatial heterogeneity

One of the most standard modeling techniques applied to mode choice is the multinomial logit model 
(MNL). Although this model specification can capture heterogeneity by introducing systematic taste 
variation, the resulting coefficients are not necessarily spatially sensitive. Therefore, the estimation could 
be biased if there is spatial heterogeneity in the choice of modes, misrepresenting the association between 
travel choices and environmental measures. Furthermore, the model specification could be estimated 
by interacting accessibility/built environment measures with socioeconomic characteristics. However, in 
this approach, the interpretation is more challenging as there is no explicit spatial segmentation. 

Latent class modeling (LCM) is a framework that allows for the introduction of heterogeneity into 
discrete choice models without the need of arbitrary segmentations of individuals (Kamakura & Russell, 
1989). LCMs are less restrictive than MNLs and, instead of systematic taste variation, they assume a la-
tent heterogeneity in preferences, which translates into types of users that cannot be directly observed by 
the analyst, but whom can be probabilistically identified and correlated with observable variables. LCMs 
implicitly estimate a different behavioral model for each latent class (with different coefficients). Ad-
ditionally, another model defines the probability of belonging to each class (Greene & Hensher, 2003). 

There are several examples of LCM in the travel behavior literature where, in most cases, the parti-
tion into classes is based on individual characteristics. For example, Hurtubia et al. (2014) estimated 
significantly different mode choice parameters for classes defined by household composition variables, as 
well as income and car ownership levels. Wen et al. (2012) used the method to identify different classes 
of travelers for high-speed rail. Etzioni et al. (2021) analyzed mode choice between three emerging 
automated vehicles: ride sharing, car sharing, and automated transit. The study estimates latent classes 
to capture taste heterogeneity using sociodemographic characteristic, travel habit, and latent variables. 
Kim and Rasouli (2022) studied the willingness to adopt new and innovative mobility solutions based 
on metrics of the individuals’ lifestyle to differentiate in classes. 

The literature proposing latent classes based on spatial attributes and/or environmental factors is 
sparse. Cox and Hurtubia (2021, 2022), manage latent segmentations of residential locations based 
on place-specific attributes and observed location choices in Santiago, Chile. Oliva et al. (2018) es-
timate a SLC model for the frequency of bicycle commuting, where class membership depends on 
built environment attributes of the neighborhood of residence of each traveler. Beyond providing a 
richer understanding of the relationship between the built environment and cycling, the results identify 
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neighborhoods that facilitate or discourage cycling, helping to define and geographically target policies 
to incentivize bicycle use. Furthermore, Sarrias (2019) found that using discrete classes to model spatial 
heterogeneity can be more advantageous than using a continuous distribution. 

While this approach should allow to better measure spatial heterogeneity in travel behavior, we 
have not identified previous literature applying SLC to accessibility (or built environment) measures and 
multimodal choice relationships. This article seeks to better understand how different urban contexts 
play a role in defining mode choice behavior while acknowledging that the response of travelers to the 
built environment is not constant in space. 

4	 Methods

The hypothesis underlying this work is that the competition between different travel modes varies across 
locations, and therefore, the factors that influence behavior differ depending on the spatial context. 
Areas with low population density and lower intensity of use of space typically have more available 
road and parking infrastructure, making driving a more accessible option compared to walking or us-
ing public transit. Conversely, areas with high population density and more intense use of the built 
environment generally have more infrastructure and support for walking or using public transit, but less 
availability of parking and roads for driving. Therefore, the specific travel behavior of an individual may 
vary depending on where they start and end their trip, as well as the transportation options available to 
them in that location.

The density of people using a space will depend on how many people can access that place, which 
depends not only on local accessibility levels but also on the regional access to places. Then both mea-
sures (local and regional accessibility) are of interest in characterizing the mode choice and considered in 
our study. First, local accessibility corresponds to small-scale measures of people and employment within 
a place, reachable through its pedestrian transportation networks. Regional accessibility measures jobs 
that can be reached in motorized vehicles (either transit or cars) in a larger urban context.

The combination of regional and local accessibility measures will be used to segment the space into 
classes. Each class will be associated with different utility functions for mode choice, based on trip dis-
tance and individual characteristics. Consequently, the results will help describe the critical components 
of the built environment in each spatial context, improving the performance assessment of different land 
use policies and transit infrastructure. 

We propose to compare two modeling approaches, Spatial Latent Classes (SLC) and a more tra-
ditional MNL. Both models will include the same independent variables that account for local and 
regional accessibility measures. To the best of our knowledge, this is the first time a Spatial Latent Class 
approach is applied to a mode choice model.

4.1	 Multinomial logit (MNL)

For the case of the MNL, the utility associated with transport mode m for individual n with a trip start-
ing in zone i with destination in zone j is defined as:

								        (1)

where εijm is a random term accounting for unobserved factors influencing the choice and V n
ijm  is 

the systematic part of the utility, which can be specified as a function of individual characteristics, zonal 
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attributes, and travel distance.
If the error term follows a Gumbel independent and identical distributed (IID), the functional 

form of the probability of choosing a particular transport mode m in a set M of available mode, for an 
individual n with trip-origin i and destination j is:

	 (2)

4.2	 Spatial latent class (SLC) and mode choice model

Latent Class Models allow for the estimation of different choice models conditional on the membership 
to unobserved latent classes, which are traditionally modelled as a function of individual characteristics. 
We adapt this approach by making the class membership model a function of spatial attributes, there-
fore, segmenting space in terms of the likelihood of a belonging to a spatial latent class (SLC) for each 
location. Because the mode-choice models conditional to each latent class are estimated simultaneously 
with the class membership model, the spatial segmentation can be interpreted as zones of the city associ-
ated with different patterns of mode-choice behavior.

We define the membership function of location origin i to class k (Wki ) similarly to the utility 
function of Equation 1 but with its systematic part being a function of a vector of local and regional ac-
cessibility measures associated with zone i. Making the same assumptions regarding the error term, the 
probability of zone i belonging to class k is:

	 (3)

We define a mode choice model conditional to each class, where the probability of an individual 
n choosing mode m for a trip between zones i and j, conditional on the origin of the trip belonging to 
spatial class k (P nijm/k ) as in Equation 2, but with class-specific preference parameters. Then, the uncon-
ditional choice probability of mode m for individual n travelling between zones i and j is

	 (4)

Both the MNL and the SLC models can be estimated through maximum likelihood methods.

5	 Case study data

The location and time frame for this case study is the metropolitan region of Portland, Oregon, in 2011. 
The Urban Growth Boundary (UGB), a normative instrument of the state of Oregon defined by the 
local Metropolitan Planning Organization (MPO), will define the area for this application. The UGB 
limits urban sprawl by confining development to a specific area. For this study, the area size is approxi-
mately 1,000 km2 and includes approximately 1.5 million people in 2011. There are several cities within 
the metro area: Portland is the central city of the region, with a population of approximately 600,000 
in 2011. The transportation system comprises an extensive freeway network that connects the central 
city with the surrounding suburbs. Furthermore, the regional transit system includes five light rail lines 
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with an length of around 100 km, more than 80 bus routes with a fleet of about 700 buses, and a daily 
passenger volume (Pre-COVID-19) of more than 300,000. 

The Oregon Household and Activity Survey of 2011 (Oregon Modeling Steering Committee, 
2011) is used for the travel data estimation in the models. The one-day survey includes 6,108 house-
holds, adding up to 56,534 trips. These data reflect the travel patterns of what would be a normal week-
day in the metropolitan area of Portland, Oregon.

To define our basic spatial analysis unit, the region was subdivided into 80 by 80 meters square 
cells, resulting in approximately 160,000 zones. The population and employment levels were calculated 
for each cell. The cell-based employment was derived from Metro, the Regional Metropolitan Planning 
Organization. For population, we used 2010 block-level population census data, scaled according to the 
percentage of a block within each cell (areal interpolation). 

5.1	 Travel data

The 56,534 trips included in the survey correspond to the Metropolitan Statistical Area of Portland, 
which includes parts of the southern state of Washington. The data set is filtered to include only trips 
that start and end in Oregon, with walking, transit, or automobile as travel modes (the sample for 
bicycle trips was too small to merit inclusion), and travelers older than 16 years of age. Observations 
without income data, trip distance, and a specified age were excluded. Data processing resulted in a final 
data set of 27,252 trips/observations. Each trip origin is matched with a unique cell. The travel patterns 
of the sample are shown in Table 1.

Table 1. Travel patterns of the sample

Car Transit Walk

Sample 22,779 1,760 2,713

Trips (%) 3.01M (82%) 0.28M (8%) 0.39M (10%)

Mean distance [km] 7.5 11.5 0.8

Median distance [km] 5 9.9 0.5

Each observation is a trip, described by the travel distance, the origin coordinates, and the chosen 
primary mode. The individual traveler characteristics included are the income level of the home in three 
categories ($0 to $35,000; $35,000 to $75,000; and $75,000 or more), gender as a binary variable (0 
represents female; 1 means male), and age in three levels (16-24, 25-65 and 65 and older). The socio-
economic distribution of the sample is shown in Table 2.
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Table 2. Socioeconomic distribution of the sample

Socioeconomic distribution People Trips per person

Total sample 6,564 4.2

Income (annual household income - US dollars)

Category 1: <$35,000 1,016 (15%) 4.0

Category 2: $35,000 - $75,000 2,136 (33%) 4.1

Category 3: >$75,000 3,412 (52%) 4.3

Age

Category 1: 16-24 426 (7%) 3.5

Category 2: 25-64 5,003 (76%) 4.2

Category 3: 65+ 1,135 (17%) 4.1

Gender

Woman 3,553 (54%) 4.3

Man 3,011 (46%) 4.0

Finally, as a reference, we include a heat map of origin and destinations on Figure 1 and Figure 
2. The maps show that the origin and destinations are similarly concentrated in the downtown and in 
several regional subcenters across the metropolitan area. 
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Figure 1. Heatmap of origins
 

Figure 2. Heatmap of destinations
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5.2	 Local accessibility

For local accessibility, all measures are defined in a 750-meter isodistance buffer from the centroid of 
each grid cell, following the walkable road network. This 750-meter isochrone accounts for approxi-
mately 10-minutes walking, usually considered as the threshold of proximity travel (Marquet & Mi-
ralles-Guasch, 2015). The buffer area acts as the pedestrian catchment area (PCA) or a network measure 
and correlates with mode choice (Adams et al., 2015; Koohsari et al., 2015; Stevens, 2017; Stockton 
et al., 2016). The total population and employment within each PCA are computed and used as local 
accessibility measures. Employment is an indicator of land use intensity and has been associated with 
mode choice (Brown et al., 2016; Clifton et al., 2016; Huang et al., 2019; Lefebvre-Ropars et al., 2017). 
Furthermore, population density has been identified as a relevant covariate of modal choice (Eom & 
Cho, 2015; Merlin, 2018; Tanishita & van Wee, 2017). Combining all these measures will represent a 
proxy of activity capacity in an area. The final suite of variables included are:

•	 Pedestrian Catchment Area Surface (PCA)
•	 Employment in PCA
•	 Population in PCA

5.3	 Regional accessibility

Variables for regional accessibility are constructed for the number of jobs accessible by motorized vehicles 
in a time frame of 30 minutes for each centroid cell grid. Previous studies have found that these measures 
are correlated with the use of automobiles and transit (Bento et al., 2005; Owen & Levinson, 2015). 
The accessibility measure for cars is constructed using the Portland MPO estimates from the regional 
transportation model at the TAZ level. The travel time from the centroid of TAZ to every other TAZ 
centroid is scaled down to each cell. The assumption is that the travel time between two TAZ centroids is 
the average between the origin and destination grid cells within a TAZ. Then, with the same threshold of 
30 minutes, all reachable TAZ employment is added. Around 90% of car trips in the sample are under 
30 min. Therefore, the threshold is chosen as a round number with high representation. 

The transit accessibility is constructed from the GTFS data standard and the R package tidytransit 
(Poletti et al., 2020) to identify all the transit stops that are within a 30-minute travel time of each transit 
stop. The 30-minute threshold is chosen as it captures most transit trips (~60%) and the same timeframe 
used for car accessibility measure. Additionally, a series of 250-meter network buffers is created at each 
stop, for which total employment is calculated. The final variable is generated by adding all the jobs for 
each stop to all other stops within 30 minutes of transit travel (understanding the jobs of each stop as 
the buffer of the employment network of each stop). 

Therefore, the two regional accessibility metrics included are:
•	 Number of jobs accessible by public transport in 30 min
•	 Number of jobs accessible by car in 30 minutes

Table 3 shows the basic statistics of accessibility measures. 
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Table 3. Statistics of accessibility measures

Number of cells 160,148

Local accessibility Mean Standard 
Deviation

Median Max

Pedestrian Catchment Area Isodistance 750m 
(PCA) [ha]

38 25 34 122

Employment in PCA [# employees] 444 1787 377 55,445

Population in PCA [people] 802 958 506 9,569

Regional accessibility Mean Standard 
Deviation

Median Max

Total employment accessible by transit in 30 min-
utes [# employees]

14,172 40,288 0 227,459

Total employment accessible by car in 30 minutes 
[# employees]

427,334 144,586 313,257 718,650

All variables are scaled by their standard deviation without centering to make the estimation process 
more efficient.

6	 Results

As explained in the methods sections, the SLC has a class membership model and a class-specific mode 
choice model, making it conditional to the class membership. The MNL will include the same indepen-
dent variables as the SLC models, but with environmental variables added directly to the utility func-
tion. The class membership model is set up for three spatial latent classes associated with each zone (grid 
cell) according to their local and regional accessibility measures. We explored specifications with more 
than three classes, but then the interpretation of each class became challenging, without much gain in 
model fit. The models were estimated using Pandas Biogeme (Bierlaire, 2018). Table 4 shows the results 
for SLC and MNL.
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Table 4. Coefficients for SLC and MNL

Spatial Latent Class (SLC) Multinomial Logit 
(MNL)

Coefficients Class 1 Class 2 Class 3

CLASS MEMBERSHIP MODEL Value p-value Value p-value Value p-value Value p-value

Intercept -2.25 0.00 Ref. 0.948 0.00 - -

Local Accessibility

Pedestrian Catchment Area - 750m 
Isodistance (PCA) [ha]

-0.43 0.00 Ref. 0.41 0.00 - -

Employment in PCA [#1000s jobs] 10.00 0.00 Ref. -4.00 0.00 - -

Population in PCA [people] 0.05 0.00 Ref. -1.10 0.00 - -

Regional accessibility

Total employment accessible by 
transit in 30 min (# jobs)

0.08 0.00 Ref. -0.06 0.00 - -

Total employment accessible by car 
in 30 min (# jobs)

-0.87 0.00 Ref. -0.40 0.00 - -

CAR Value p-value Value p-value Value p-value Value p-value

Intercept 2.92 0.00 14.74 0.07 25.99 0.00 5.66 0.00

Socioeconomics

Age (25-65) 0.13 0.00 -12.00 0.00 3.86 0.00 -1.34 0.00

Age (16-25) -0.28 0.00 0.57 0.00 -11.02 0.00 -0.76 0.00

Gender (male=1) -0.79 0.00 0.00 0.00 -0.51 0.00 -0.22 0.00

Low household annual income 
($0-$35K)

-9.49 0.00 -1.68 0.00 -11.72 0.00 -1.49 0.00

Mid household annual income 
($35K-$75K)

-1.58 0.00 -0.96 0.00 -9.76 0.06 -0.82 0.00

Trip characteristics

Distance to the destination (km) -2.35 0.00 -0.31 0.00 -0.92 0.00 -0.59 0.00

Local Accessibility

Pedestrian Catchment Area - 750m 
Isodistance (PCA) [ha]

- - - - - - 0.28 0.00

Employment in PCA [# jobs] - - - - - - -0.08 0.00

Population in PCA [people] - - - - - - -0.18 0.00

Regional accessibility

Total employment accessible by 
transit in 30 min (# jobs)

- - - - - - -0.07 0.00

Total employment accessible by car 
in 30 min (# jobs)

- - - - - - -0.80 0.00

WALKING Value p-value Value p-value Value p-value Value p-value

Intercept 5.64 0.00 16.34 0.00 19.40 0.00 3.87 0.00

Socioeconomics

Age (25-65) 4.15 0.00 -9.34 0.00 -6.79 0.00 -0.27 0.00

Age (16-25) 0.00 0.00 1.12 0.00 -10.01 0.00 -0.41 0.00

Gender (male=1) -0.91 0.00 0.76 0.00 0.01 0.00 -0.01 0.23
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Spatial Latent Class (SLC) Multinomial Logit 
(MNL)

Coefficients Class 1 Class 2 Class 3

Low household annual income 
dummy ($0-$35K)

-1.22 0.00 -0.87 0.00 -9.12 0.00 -0.77 0.00

Mid household annual income 
dummy ($35K-$75K)

-1.17 0.00 -0.39 0.00 -9.44 0.00 -0.42 0.00

Trip characteristics

Distance to the destination (km) -18.27 0.00 -40.73 0.00 -1.65 0.00 -13.88 0.00

Local Accessibility

Pedestrian Catchment Area - 750m 
Isodistance (PCA) [ha]

- - - - - - 0.36 0.00

Employment in PCA [# jobs] - - - - - - -0.03 0.00

Population in PCA [people] - - - - - - 0.06 0.00

Regional accessibility

Total employment accessible by 
transit in 30 min (# jobs)

- - - - - - -0.04 0.00

Total employment accessible by car 
in 30 min (# jobs)

- - - - - - -0.09 0.00

Pseudo R2 0.659 0.643

Log-likelihood -1,376,624 -1,442,723

In the class membership model, the first class has positive coefficients for the local population and 
employment with a negative coefficient for the PCA. In contrast, class three has opposite coefficients 
signs for the same attributes. Employment and population within a PCA have a very skewed distribu-
tion with the mean much higher than the median while, in comparison, the PCA appear more centered 
in the mean. Therefore, Class 1 is more likely when employment and population are high and especially 
when density is high due to smaller PCA. Additionally, Class 1 membership increases with transit em-
ployment accessibility, suggesting that more central areas can be associated with this class. In contrast, 
class 3 would be less likely in the case of high employment and population in local accessibility, and 
more likely when the density is lower. 

The characterization of each class can be described as follows:
•	 Class 1: High population and employment density; high regional transit accessibility; lower 

levels of accessibility by car.
•	 Class 2: Moderate levels of population and employment density; moderate levels of transit and 

car accessibility.
•	 Class 3: Low density of population and employment; low level of transit accessibility; moderate 

levels of car accessibility. 
To tag the classes according to our interpretation, we use the first three cluster types from Salon 

(2015): City Center, Urban and Suburban. Class 1 corresponds to the City Center; Class 2 corresponds 
to Urban areas and Class 3 to Suburbs.

To further characterize the classes, Figure 3 shows the map of the most probable class membership 
for each cell. The Central City class (purple in the figure) coincides with the center of the metropolitan 
area, including downtown, the central financial district and the older area of the city (shown with zoom 
in Figure 4). As the city center, it is the hub of the transit network and therefore has the region's highest 
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level of transit service. This area is delineated by the Willamette River to the east, a trench freeway that 
cuts the surface connectivity to the west. 

Surrounding the Central City class is the Class 2 - Urban (green in Figure 3 and Figure 4), which 
consists of neighborhoods characterized by a moderate population density and some corridors that pro-
vide retail and services. Finally, the outer part of the urban area is Class 3 - suburban (yellow in Figure 3 
and Figure 4), which corresponds to zones with low activity intensity and dwellers. Some smaller urban 
areas (green spots in Figure 3) surrounded by Suburban class areas correspond to a location with some 
level of concentration of activities of people (regional subcenters).

Figure 3. Portland most probable class membership for each cell

Figure 4. Zoom in to Portland Central City for the most probable class for each cell from previous figure

Figures 5, 6, and 7 show the spatial distribution of the membership probability for each of the three 
classes, respectively. Central city is the most probable class in under 1% (0.16%) of the total land, while 
the Urban class is the most probable in 26% of the cells. The suburban class dominates the region, being 
the most likely in 73% of the land area. The Central City class (Figure 5) is not only the most probable 
in the central area, but it is also only likely in the central city and adjacent areas. In the rest of the met-
ropolitan area, a Central City class membership is quite improbable (<15%). The urban class (Figure 6) 
has little competition from other classes in the areas where it is the most likely. In the areas where the 
suburban class is the most probable, there appears to be more competition with the urban class, except 
for the limits of the metropolitan area into rurality where the suburban class is highly likely. 
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Figure 5. Portland Central City class membership probability

 Figure 6. Portland urban class membership probability 

Figure 7. Portland suburban class membership probability
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Figure 8 shows the distribution of accessibility measures by highest probability class for each cell. 
Figures A, B, and C show local measures, while D, and E display regional measures. The Central City 
class has the highest accessibility in every measure, the urban class tends to be in the middle, and the 
suburban class displays the lowest values. Employment in the pedestrian catchment area (A) has lower 
magnitudes in the Suburban and the Urban classes compared to the Central City class, meaning that 
a large concentration of these measures is in the central city. The pedestrian catchment area (B), which 
works as a connectivity measure, shows a clear difference between the three classes. If the area were only 
an open space, it would be a circle of 750 meters radii, approximately 176 hectares. Because the urban 
form of the city has blocks, the maximum possible connectivity is less than 125 hectares. The median 
value of the buffer area of the network is around 25 hectares for the Suburban class, 65 hectares for the 
urban class and approximately 100 hectares in the Central City class. These differences indicate how 
relevant local connectivity is to class membership. 

The Urban class also shares a range of values with those of the Central City class in other measures, 
such as the population in the pedestrian catchment area (C) and the regional accessibility of automobile 
(D) and transit (E). Then, while controlling for all other variables, higher local employment levels define 
the Central City class. The suburban class also shares a range of measures with the values of the Urban 
class, except for regional transit accessibility, which is particularly low, with most of the values close to 
zero, indicating that the transit service is nonexistent there.
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Figure 8. Distribution of local and regional accessibility measures in each cell of the most probable class
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6.1	 Mode choice

Table 4 also shows the results for the class-specific mode choice model of the SLC approach and the 
MNL. In both approaches, transit is set up as the reference alternative. The MNL includes the local and 
regional accessibility variables directly in the walking and car utility functions, unlike the SLC, where 
they are included in the class membership model. 

The effect of spatial heterogeneity is most notable when the direction of the effect (i.e., the sign 
of the parameter) of socioeconomic attributes is different across spatial classes. For example, while be-
ing in the age group 25 to 65 increases the probability of walking in the Central City (when compared 
with the reference, 65+ group), it has the opposite effect in Urban and Suburban class areas. Similarly, 
belonging to the 25-65 age group diminishes the probability of using the car in Central and Suburban 
areas, while the opposite happens in Urban class areas. Another interesting example of this is the fact 
that men are less likely to walk in Central City than women while, in Urban and Suburban areas the 
effect is the opposite.

Less notable, but still relevant, is the difference in magnitude of the preference parameters across 
classes. For example, households of low income are less likely to use the car everywhere, but this effect is 
much stronger in Central and Suburban areas. 

The MNL model, while able to capture the effect of socioeconomic characteristics and accessibility 
levels in mode choice, is unable to measure spatial heterogeneity unless an interaction between all pos-
sible combinations is explicitly included in the model specification. While this is possible to do, results 
become difficult to interpret and spatial segmentation is not possible.

For validation, we re-estimated the model with a randomly chosen subset of 80% of the sample 
and left the remaining 20% for testing purposes. The pseudo R2 of the models when used in prediction 
mode on the observations of the left-out-sample is 0.653 for the SLC model and 0.637 for the MNL, 
indicating that the SLC approach not only performs better in terms of fit, but also provides more ac-
curate forecasting. 

6.2	 Scenario analysis

We develop a scenario analysis by plotting all possible combinations of socioeconomic attributes versus 
median levels in accessibility measures. The models are applied to a range of distances for 18 scenarios 
by combining all the levels of age (3 categories), income (3 levels), and gender (2 categories) totaling 18 
scenarios. Figure 9 shows the results for the SLC and Figure 10 shows the results for MNL. Each line in 
every subfigure corresponds to a unique case of age, income, and gender totaling 18 lines. Each column 
in each of the plots corresponds to a travel mode (walk, transit, or car), and each row corresponds to a 
class (Central City, Urban, and Suburban). 

For each class, we propose a scenario using the median values of accessibility measures in each area 
where each class is the most probable. These median values correspond to the middle line of the boxplots 
in Figure 8. These values are applied to both the SLC and MNL models.
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Figure 9. Probabilities of SLC mode choice versus travel distance – median accessibility values
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Figure 10. Probabilities of MNL mode choice versus travel distance – median accessibility values

In Central City, with high local and regional accessibility, it is very likely that walking is chosen 
for short trips in all socioeconomic groups in SLC and MNL. However, in the SLC, there are socioeco-
nomic groups in which walking is much more likely than in the MNL. Therefore, the interaction of 
accessibility measures and socioeconomic characteristics of this class is less prominent in the MNL than 
in the SLC. 

Furthermore, the difference between SLC and MNL is that the former has a lower variability across 
socioeconomic attributes than the latter for very short trips. While SLC has a walking probability for 
trips under 250 meters between 55-65% in urban and between 30%-40% in the suburban case for all 
socioeconomic groups, the difference in the MNL is between 30-80% in urban and 25-75% in subur-
ban. 

The same differences occur in the case of the car. In SLC, the likelihood of choosing a car is between 
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30-45% for short trips in urban areas and between 55-70% in suburban areas. On the contrary, the 
MNL case can be between 20-60% for the Urban and 25-75% for Suburban. Additionally, in the case 
of car and walking, the probability tends to be more stable in the very short trips section and steeper 
in the case of the SLC, while the change in MNL is more gradual. Although MNL is sensitive to the 
environment, it is less precise, especially on short trips that are more likely to be walked.

The exercise in this research illustrates how the spatial heterogeneity affects the characterization be-
tween mode choices and accessibility measures. Higher accessibility is associated with high use of transit 
and walking in both model approaches. However, in the case of the MNL, these differences are not as 
precise as in the SLC model. 

7	 Discussion 

The proposed modeling approach helps to better understand the choice of mode depending on income 
and other socioeconomic characteristics, conditional on the attributes of the origin and the distance of 
the trip. Previous studies indicate that travel behavior is spatially heterogeneous and that different socio-
economic groups react differently depending on the spatial context and can have different sensitivities to 
distance, especially in walking choice. The proposed method helps confirming this trend and provides 
a framework that measures heterogeneity in travel preferences, while simultaneously segmenting space 
according to the travel patterns that are more likely in each location, as a function of spatial attributes.

 In the case study for this research, the Central City class is associated with a greater use of sus-
tainable transportation. However, the areas where this class is likely only represents a small part of the 
urban area in the study. The total area adds up to approximately 1.5 km2 (less than 0.2% of the surface 
of the study area). It is neither necessary nor plausible to think that the whole city should transform to 
high intensity in order to decrease the dependence on cars. However, it is remarkable how small this 
area is—where transit and walking are an alternative to driving—and how little is the use of sustainable 
transportation outside of it. The Urban class is the transition between the Central City and the Subur-
ban class. Both, Urban and Suburban classes, have generally low regional transit accessibility. Therefore, 
the likelihood of using transit is much lower. 

Furthermore, it is interesting that walking shows a lower distance threshold in the Urban class 
than in the Central City class. In the example from Figure 9 and Figure 10, the chances of walking are 
almost 0 when the length of the trip reaches 2 km for the urban class. On the contrary, the probability 
of walking for trips over 2 km is significant in the Central City. The higher probability in the Central 
City could be due to the more substantial number of walking destinations within a short distance. This 
process reflects something counterintuitive: people are willing to walk further when they have more 
options nearby. It is important to notice how the proposed approach (SLC) is able to capture this trend 
while also, in general, it allows to measure more heterogeneity in behavior across individuals than the 
MNL approach (compare Walk in the Central City between figures 9 and 10).

The approach proposed here could be used to improve the Portland Metro Regional Demand 
Model, which does not account for spatial heterogeneity but, instead, considers the same utility function 
specifications for the whole area of study. The agency’s approach is unlikely to capture the interaction 
between socioeconomic attributes and the location where the trip starts, especially in the central city 
where short trips (relevant for attaining sustainability goals) can be misestimated. 

The SLC approach improves the precision in the characterization of the mode choice when com-
pared with the MNL. The MNL could lead to results that over- or underestimate modal splits. This im-
precision in the relationship could support the notion of a weak relationship between urban accessibility 
and travel choices. In addition, the SLC approach not only allows for a more refined interpretability of 
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model results, but also allows to delimit spatial areas associated with certain travel patterns and improves 
the prediction accuracy.

A limitation of this study is the absence of any treatment for residential self-selection. There is 
evidence that attitudes towards specific travel modes are endogenous to the built environment, making 
its use in models problematic (Kroesen, 2019). Furthermore, the analysis considers all travel purposes, 
which means that trip ends are not necessarily anchored to the residential location of the traveler. There-
fore, no particular treatment for self-selection was included. Regarding the discussion of self-selection in 
other studies, it is crucial to consider that highly walkable environments in cities like Portland may be so 
scarce that identifying different typologies of highly walkable urban environments can be very challeng-
ing. Thus, future research considering self-selection should acknowledge that, if the supply of housing 
in highly walkable areas is less than 1% of the region, which are not necessarily affordable, self-selection 
may not always be feasible.

It is essential to acknowledge that these results are valid only for the Portland region. It is a mid-
sized metropolitan area in the US and one of the few with an urban growth boundary. In the US con-
text, the region may be more compact than others of a similar size. The internal variability of contextual 
attributes is not the same across regions, especially if they are in different countries or continents. Thus, 
the results of class membership and metropolitan structure in Portland, with a clear high-activity con-
centration center and a smooth gradient toward the skirts of the region, could be unique to this case. 

Finally, transit could have even more variability across urban areas than population or activities. 
For example, Portland has a small area with frequent transit service, which tends to be better than other 
cities in the US, but worse than other metropolitan areas in Latin America, Europe, or Asia. As the class 
membership model here is transit sensitive, its variability may play an essential role in changing how 
the classes are defined and the relative importance of other attributes that should be further analyzed in.

Future research should identify and characterize areas with different behavioral responses. This 
effort must come with a proper conceptualization of the mechanism that affects a specific behavioral 
response in each context. Characterizing different types of urban environment associated with a specific 
behavioral response could evolve into urban planning standards that can encourage certain types of trav-
el. Consequently, this could help to (partially) avoid the need for complex (and expensive) mathematical 
modeling of urban transport systems. Future work should aim to develop these guidelines.
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