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Abstract: To address the need for better non-motorized traffic data, 

policymakers and researchers are collaborating to develop new 

approaches and methods for estimating pedestrian and bicyclist 

traffic volumes. Crowdsourced mobile data, which has higher spatial 

and temporal coverage and lower collection costs than data collected 

through traditional approaches, may help improve pedestrian and 

bicyclist traffic estimation despite their limitations or biases. This 

systemic literature review documents how researchers have used 

crowdsourced mobile data to estimate pedestrian and bicyclist traffic 

volumes. We find that one source of commercial fitness application 

data (i.e., Strava) has been used much more frequently than other 

crowdsourced mobile data, and that most studies have used 

crowdsourced mobile data to estimate bicyclist volumes. 

Comparatively few studies have estimated pedestrian volumes. The 

most common approach to the use of crowdsourced counts is as 

independent variables in direct demand models. Variables 

constructed from crowdsourced mobile data not only have significant 

correlations with observed counts in statistical models but also have 

larger relative importance than other factors in machine learning 

models. Studies also show that including crowdsourced mobile data 

can significantly improve estimation performance. Future research 

directions include application of crowdsourced mobile data in more 

pedestrian traffic estimations, comparison of the performance of 

different crowdsourced mobile data, incorporation of multiple data 

sources, and expansion of the methods using crowdsourced mobile 

data for non-motorized traffic estimation. 
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1 Introduction 

Active travel modes, such as walking and biking, are important to address challenging issues in 

modern society such as auto dependence, air pollution, climate change, obesity, and physical and mental 

health. However, the share of these active travel modes has been decreasing in recent decades (FHWA, 

2018). A better understanding of the spatial and temporal distribution of pedestrian and bicyclist traffic is 

necessary to promote active travel modes. In contrast to vehicular monitoring programs, historic 

investments in pedestrian and bicyclist traffic monitoring programs have been very limited (FHWA, 

2016). More than half of the states in the US do not have well-established monitoring programs (Ohlms et 

al., 2019). 

To address the lack of comprehensive pedestrian and bicyclist traffic volume data for segments and 

intersections in networks, engineers have used several approaches to estimation, including expansion 

factors, direct demand models, four-step models, and agent-based simulation models (Bhowmick et al., 

2022; Turner et al., 2017). While these methods utilize different mechanisms, they all share a common 

requirement for high-quality data as input. For example, direct demand models, which establish the 

relationships between observed counts and multiple factors such as built environment characteristics, 

socio-demographics, and roadway geometry, need traffic counts related datasets to carry out the analysis. 

Four-step models need household travel survey data to estimate the origin and destination (OD) of 

pedestrian and bicyclist trips among different zones in the studied area.  

In recent years, researchers have begun to use crowdsourced mobile data when estimating pedestrian 

and bicyclist volumes. Crowdsourced mobile data are defined as data collected from a diverse group of 

individuals with varying levels of expertise through an open call for voluntary participation, using mobile 

devices and related technology (Estellés-Arolas & González-Ladrón-De-Guevara, 2012). Mobile devices 

have a large number of users across both time and space. Compared with traditional count datasets, which 

are collected by sensors or people at a limited number of locations, crowdsourced mobile data have a 

higher spatial and temporal coverage. The cost of data collection is also lower for crowdsourced mobile 

data as they are mostly by-products of the services provided by mobile devices. Although new approaches 

for using crowdsourced mobile data have been proposed, and vendors with proprietary models for 

estimating bicyclist and pedestrian traffic volumes exist (e.g., StreetLight), routine procedures for using 

crowdsourced mobile data have yet to be developed and standardized. Given the rapid evolution in the 

field and the objectives of this project, it is useful to review related studies and provide a synthesis of 

crowdsourced mobile data and related methods for estimating bicyclist and pedestrian traffic. Our 

literature review aims to address the following questions:  

• What types of crowdsourced mobile data have been utilized to estimate pedestrian and bicyclist

traffic volumes?

• Which methods have been employed in the estimation process?

• How does crowdsourced mobile data perform in the estimation?

We use a systematic review approach to address these questions. First, we identify and summarize 10

related literature reviews that have focused on the broader topic of pedestrian and bicyclist traffic 

estimation, with some touching upon the application of crowdsourced mobile data. These reviews provide 

the context for our review of empirical papers by summarizing the various applications of crowdsourced 

data in pedestrian and bicyclist studies. This summary also illustrates the need for more focused reviews 

on methodological considerations in the use of crowdsourced data in volume estimation, specifically, 

their performance in estimating measures such as average annual daily pedestrians or bicyclists. 

Second, we review 22 empirical papers. Among other elements of the papers, we summarize modes, 

data sources, modeling approach, how crowdsourced mobile data is used, and the performance of 

crowdsourced mobile data related variables. Our results provide methodological guidance for researchers 

interested in using crowdsourced mobile data for pedestrian and bicyclist traffic estimation research and 

illustrate where additional research will benefit the field. 

Following this introduction section, we present the protocols for our review, including criteria for 

inclusion of papers (Section 2). We then summarize the previous literature reviews (Section 3). We 
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introduce different types of crowdsourced mobile data in Section 4. Sections 5 through 7 summarize key 

methodological aspects of the empirical papers identified with our protocols. In Section 8, we conclude 

our findings for this study and discuss implications for future studies. 

2 Method 

We applied a systematic review approach in this study. A systematic literature attempts to identify all 

papers written on a topic using explicit inclusion and exclusion criteria and to characterize the state of 

knowledge based on a comprehensive assessment of evidence (Grant & Booth, 2009; Xiao & Watson, 

2019). Traditional literature reviews are mostly narrative as they are more likely to be purposeful and 

selective, focusing on the progress or development of the topic (Snyder, 2019). 

Systematic reviews have several key steps (Xiao & Watson, 2019). First, we defined the three research 

questions listed in the introduction section. Second, we produced a protocol for conducting the review. 

The protocol specified the search criteria, selection criteria, and coding categories. Third, we searched 

several databases of literature with keywords related to our research topic. Fourth, we screened the search 

results and included or removed studies based on the selection criteria. This step included identification of 

other review papers and the empirical papers to be summarized in detail. Fifth, we extracted the 

information defined by the coding categories after thoroughly reviewing the selected studies. Finally, we 

analyzed the results and presented our findings.  

We defined three sets of keywords related to our research questions. The first set includes pedestrian, 

bicyclist, and bike. These keywords identify the travel modes we want to study. The second set includes 

demand, traffic, volume, AADB (Annual Average Daily Bicyclists), and AADP (Annual Average Daily 

Pedestrians). These keywords are different terms or measures used to describe pedestrian or bicyclist 

traffic. The last set of keywords includes forecasting, estimation, and prediction. They are closely related 

to traffic estimation. We did not define keywords related to crowdsourced mobile data as we wanted to 

include more studies in the search process. We selected those using crowdsourced mobile data in the step 

of screening. Some less-used keywords were not included, for example, cyclists or non-motorized travel. 

We did this for two reasons. First, these keywords are closely related to the keywords we have defined in 

the protocol. Therefore, studies using these keywords often showed up in the search results. Second, we 

also included additional studies when we found they are related to our study during the review process. 

We searched four databases, including Web of Science, Google Scholar, Academic Search Premier, and 

PubMed. We searched for the keywords in the title, abstracts, and keywords of the studies. All the results 

were searched before March 31, 2023.  

Screening search results included two rounds (Figure 1). In the first round, we skimmed the titles, 

abstracts, and keywords of the studies and only included (1) studies published in English; (2) journal 

articles, conference proceedings, book sections, theses, and research reports; (3) studies that propose a 

method or apply a method to predict pedestrian and/or bicyclist traffic with one or more datasets; and (4) 

literature review studies or empirical studies with comprehensive literature reviews. After this round, we 

found 172 studies from the search results. In the second round of screening, we reviewed the title, 

abstract, and introduction of the searched items and removed replicated studies, giving priority to journal 

articles over reports when they included the same findings. We also removed articles that are not closely 

related to the topic. In addition, we removed studies that did not incorporate or use crowdsourced mobile 

data. After two rounds of screening, 19 empirical studies remained for further review and analysis. At the 

same time, we identified 10 literature review studies and empirical papers with comprehensive reviews 

for the purpose of establishing the context for this paper.  
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Figure 1. Searching and screening results 

Last we extracted key information from each of the selected literature reviews and empirical studies. 

For the 10 literature reviews, the information includes general information about the studies (e.g., authors, 

year, and title), travel modes, type of review, number of papers reviewed, focus of review, and selected 

findings. As to the 19 empirical studies, the information includes general information, study locations, 

travel modes, application of their results, types of crowdsourced mobile data, information about 

pedestrian or bicyclist count data, methods, and performance of the crowdsourced mobile data related 

variables. During this extraction process, we found three additional empirical studies in the reference lists, 

bringing the total number of empirical studies in this review to 22 (Figure 1). 

3 Previous literature reviews related to pedestrian and bicyclist volume estimation 

Table 1 presents key information from the 10 literature reviews identified in the search process. These 

data include travel mode, type of review, number of papers reviewed, focus, and selected findings. 

Although the exact number of empirical papers included in each review was difficult to determine, the 

number ranged from as few as 14 to more than 40. Of these reviews, five concentrate on both pedestrian 

and bicycle modes, while three focus solely on bicyclists, and two specifically on examining pedestrians. 

Most of the studies (7) were traditional narrative reviews that selectively examine the progress or 

development in the field or across research domains (Snyder, 2019). Three of them used a systematic 

review approach (Grant & Booth, 2009; Xiao & Watson, 2019). In addition, six studies were published as 

independent review articles. For the other four papers, literature review comprises only one section and 

serves for the empirical analysis. 
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These literature review papers cover a wide range of topics related to pedestrian and bicyclist traffic 

estimation (Table 1). Three studies reviewed various methods used to model pedestrian and bicyclist 

volumes (Bhowmick et al., 2022; Turner et al., 2017; Yasmin et al., 2021). In general, these methods 

include direct demand models, four-step regional models, and agent-based models, with direct demand 

models described most often (Bhowmick et al., 2022; Yasmin et al., 2021). Three studies reviewed 

models used in direct demand models (e.g., linear regression, generalized linear regression, and machine 

learning), including the independent variables associated with traffic volumes (Munira & Sener, 2017; 

Schneider et al., 2021; Singleton et al., 2021). Two early studies reviewed the practices on four-step 

regional models (Grant & Booth, 2009; Turner et al., 1997). Finally, two studies reviewed the general 

applications of crowdsourced data (Lee & Sener, 2020b; Nelson, Ferster, et al., 2021). These applications 

include estimating travel demand, assessing safety, and others. 

Although some of previous literature review studies note the application of crowdsourced data in 

estimating pedestrian and bicyclist traffic estimation, most of the reviews are narrative, concentrate more 

on the various applications of crowdsourced data, and do not present or assess more detailed 

methodological considerations or comparisons of model performance. For example, Lee and Sener 

(2020b) reviewed seven elements of applications of Strava Metro data, including identifying travel 

pattern, estimating travel demand, analyzing route choices, etc. (Table 1). For estimating travel demand, 

they provided a useful overview of five studies but did not include specifications or detailed descriptions 

of models. Furthermore, the previous literature reviews did not offer systemic review of the performance 

of crowdsourced data in estimating pedestrian and bicyclist volumes. For example, when reviewing the 

application of crowdsourced data in estimating travel demand, Nelson, Ferster, et al. (2021) focused on 

the types of crowdsourced data that have been applied but did not extend to discussion on how 

crowdsourced data improved the estimation of volumes. 
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Table 1. Summary of previous literature reviews on pedestrian and/or bicyclist volume estimation 

Note:  
a Crowdsourced data in general, including data such as fitness application data, Open Street Map data, and social media data. 

Author Mode Type of 

review 

# Of 

papers 

reviewed 

Focus of review Selected findings of review 

Turner et al. 

(1997) 

Pedestrian 

and 

bicycle 

Narrative 

review 

(Independent 

review 

paper) 

Not clear 

in citations 

Four-step 

regional models 

for estimating 

volumes 

• The study summarized four types of modified or

improved regional models

Liu et al. (2012) Pedestrian 

and 

bicycle 

Narrative 

review 

(Independent 

review 

paper) 

Not clear 

in citations 

Four-step 

regional models 

for estimating 

volumes 

• Refined zones and improved variable measurement

could enhance the four-step regional models

• More calibrated and validated pedestrian and

bicyclist count data are needed

Munira and 

Sener (2017) 

Pedestrian 

and 

bicycle 

Systemic 

review 

(Independent 

review 

paper) 

22 Direct demand 

models and 

independent 

variables for 

estimating 

volumes 

• Pedestrian and bicyclist volumes should be

modeled and interpreted separately

• Negative binomial model is suitable for modeling

pedestrian and bicyclist volumes

Turner et al. 

(2017) 

Pedestrian 

and 

bicycle 

Narrative 

review 

(Part of a 

paper) 

16 Methods for 

estimating 

volumes 

• Geographic scale is important for deciding the

pedestrian and bicyclist volume estimation methods

and there exist four types of geographic scales: 1)

regional; 2) network; 3) road segment; 4) point

Lee and Sener 

(2020b) 

Bicycle Systemic 

review 

(Independent 

review 

paper) 

27 Applications of 

Strava data in 

bicycling 

research and 

practice 

• Strava data have been applied in seven types of

applications: 1) identifying travel pattern; 2)

estimating travel demand; 3) analyzing route

choice; 4) evaluating the impact of new

infrastructure; 5) controlling for exposure in crash

analysis; 6) assessing air pollution

Nelson, Ferster, 

et al. (2021) 

Bicycle Narrative 

review 

(Independent 

review 

paper) 

21 Applications of 

crowdsourced 

data in bicycling 

research and 

practice a 

• Crowdsourced data have been applied in three

applications: 1) mapping ridership; 2) assessing

safety; 3) tracking attitudes

Schneider et al. 

(2021) 

Pedestrian Narrative 

review 

(Part of a 

paper) 

14 Direct demand 

models and 

independent 

variables for 

estimating 

volumes 

• The study summarized the methods and

independent variables that have been applied in

direct demand models to estimate pedestrian

volume

Singleton et al. 

(2021) 

Pedestrian Narrative 

review 

(Part of a 

paper) 

32 Direct demand 

models and 

independent 

variables for 

estimating 

volumes 

• Many direct demand models for pedestrian volume

rely on manually collected, short-duration counts

Yasmin et al. 

(2021) 

Pedestrian 

and 

bicycle 

Narrative 

review 

(Part of a 

paper) 

30 Method and 

independent 

variables for 

estimating 

volumes 

• Segments and intersections are most used analysis

units

• Majority of the temporal units used are daily and

hourly

Bhowmick et al. 

(2022) 

Bicycle Systemic 

review 

(Independent 

review 

paper) 

41 Methods for 

estimating link-

level volumes 

• Direct demand modeling is the mostly applied

approach

• Studies vary significantly in reporting of the results
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4 Crowdsourced mobile data sources 

Research question 1 in this study explores the various types of crowdsourced mobile data employed 

for estimating pedestrian and bicycle volume. General crowdsourced data, as defined by Estellés-Arolas 

and González-Ladrón-De-Guevara (2012), encompasses contributions from the general public and can 

include a diverse array of information, including pedestrian and bicyclist volume from Strava, network 

infrastructure from Open Street Map, and sentiment and opinion from Twitter (Nelson, Ferster, et al., 

2021). This study narrows its focus to crowdsourced mobile data, which refers to data collected from a 

heterogeneous population with varying expertise levels through an open call for voluntary participation, 

using mobile devices and associated technology. Crowdsourced mobile data discussed in this study are 

mainly used to generate insights into pedestrian and bicyclist travel patterns, such as counts, origins and 

destinations, and associated demographics. 

Four principal types of crowdsourced mobile data are found in the existing literature: fitness tracking 

application data, bicycle sharing data, application location-based service data, and cellular signal data 

(Table 2). These categories are distinguished based on two key criteria: the availability of travel mode 

information and the mechanism for raw data collection (Lee & Sener, 2020a). Bicycle sharing and fitness 

tracking application data are generated along with the information of travel mode. Bicycle sharing data is 

collected through the synergy between smartphone application, station docking system, and potentially 

GPS (Geographical Positioning System) devices, while fitness tracking data are collected mostly through 

smartphone applications. Application location-based service and cellular signal data are produced without 

the travel mode information. Application location-based service data are generated when users engage 

with location-based services on their smartphones, while cellular signal data is collected through their 

communication with mobile phone devices.  

Table 2.  Comparison among different types of crowdsourced mobile data and traditional data 

Bicycle sharing data is generated from bicycle sharing programs, including both station-based and 

dockless ones. Station-based bicycle sharing programs mainly document the starting/ending time and 

origin/destination information (i.e., rental stations) of the bicycle trips. Dockless bicycle sharing programs 

and some station-based programs equip their bicycles with GPS sensors and can record the trip 

trajectories. Compared with traditional observed count data, bicycle sharing data has a wider temporal 

coverage and a lower cost to collect. Most bicycle sharing programs, however, only cover the urban core 

areas (Nelson, Ferster, et al., 2021), and not all metropolitan areas or cities operate bicycle sharing 

programs. Because most bicycle sharing programs only provide the origin/destination data (and not trip 

Advantages Disadvantages 

Traditional observed 

count data 

• Representation of the whole population

• Accurate count data

• Travel modes are known

• Small coverage of geographical area and

temporal range

• High cost of data collection

• Malfunction of facilities

Bicycle sharing data 

• Large coverage in temporal range

• Low cost of data collection

• Travel modes are known

• Only cover urban core area

• Biased toward bicycle sharing users

• Additional workload of data pre-processing

Fitness tracking 

application data 

• Large coverage in geographical area and

temporal range

• Low cost of data collection

• Travel modes are known

• Biased toward runners and bicyclists

• Some data sources need additional workload of

data pre-processing

Application location-

based service data 

• Large coverage in geographical area and

temporal range

• Low cost of data collection

• Biased toward smartphone users

• Additional workload of data pre-processing

• Travel modes are unknown

Cellular signal data 

• Large coverage in geographical area and

temporal range

• Low cost of data collection

• Biased toward mobile phone users

• Additional workload of data pre-processing

• Travel modes are unknown

• Low spatial precision
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trajectories), modelers can only provide measures of demand for the analysis zones where the stations are 

located, which manifests in high volumes that are not reflected in connecting zones. Although modelers 

could use shortest-path algorithms or other route-choice models to assign bicycle sharing trips to the 

network (Kothuri et al., 2022; Proulx, 2016), these approaches introduce error, reducing the validity of the 

volume estimates. Bicycle sharing trajectories, like trajectories of fitness tracking applications, do not 

introduce this error. As with measures of bicyclist demand provided by fitness tracking applications, 

bicycle sharing data only contains trips of bicycle sharing users, which is only a portion of all bicyclists.  

Fitness tracking application data refers to the running, walking, and cycling trajectory information 

gathered from fitness applications on smartphones. The travel modes of these data are known, which sets 

it apart from other location-based service data. One popular example of these smartphone fitness 

applications is Strava. While the main function of these fitness applications is to help users record their 

GPS trajectories during physical activities, the information of these trajectories can be utilized to support 

pedestrian and bicyclist traffic volume estimation. For example, Strava provides licenses upon which the 

trajectory data will be aggregated to road segments. The aggregated data include trip numbers by different 

directions, age groups, and genders. Since 2022, Strava has started to provide the origin and destination 

data of the trips among standard H3 hexagonal zones (Gamez, 2022). Some fitness applications do not 

provide aggregated data but GPS trajectories directly, such as Mon ResoVelo (Strauss et al., 2015). In this 

case, data users need to aggregate the GPS trajectories by themselves which involves heavy work of data 

processing. Many studies have compared the Strava data with observed count data directly. Lee and Sener 

(2020b) summarized the correlations between Strava and observed bicyclist counts in the literature and 

found that the correlations range from 0.36 to 0.83, most of which are larger than 0.6. Compared with 

traditional count data, fitness application data have a larger geographical and temporal coverage and 

lower cost of data collection. However, as their users are mostly runners and cyclists, fitness application 

data bias toward these populations. In addition, among these subpopulations, there is a disproportionate 

representation of people wealthy enough to purchase the devices on which they can be used.  

Application location-based service data are the geographical location data collected from smartphone 

applications. When people use these applications, their GPS locations, user ID, and the corresponding 

time will be uploaded to the cloud servers (Nishi et al., 2014). For example, when using Yelp to search 

for a nearby restaurant, the location and time of the user will be recorded. The data aggregated from 

multiple smartphone applications can provide valuable support for pedestrian and bicyclist volume 

estimation. Unlike fitness tracking application data, raw location-based service data from other apps 

typically does not include information about the mode of transportation used during activities. When 

dealing with these data, data users need to develop algorithms to identify walking or biking trips from all 

activities recorded by the applications, which is a challenging task. Compared with traditional observed 

count data, application location-based service data cover a larger geographical area and a longer temporal 

range and have a lower cost when collecting data. However, these data are biased toward smartphone 

users. 

Cellular signal data are geographical location data collected from mobile devices when they connect to 

cellular networks or move across the cell tower boundaries. Cellular service providers record and 

maintain these data for operation and billing purposes. Similar to application location-based services, 

analytical algorithms such as statistical regression or machine learning are necessary to detect walking or 

biking trips from all activities as the travel modes are not available with the raw data. Compared with 

traditional count data, cellular signal data have a more thorough coverage in terms of geographical area 

and temporal range. The cost of the corresponding data collection is lower. However, cellular signal data 

have a lower spatial precision, ranging from 200 to 1000 meters. This limitation makes it difficult to 

recognize walking or cycling trips from these data, as these trips are usually very short. In addition, 

cellular signal data is biased toward mobile phone users. 

Some companies, such as StreetLight and Cuebiq, purchase data from multiple sources and generate 

pedestrian and bicyclist trip information for their customers. Although these datasets themselves do not fit 

the definition of crowdsourced mobile data because they are not provided voluntarily in response to a call, 

we include them in our discussion for two reasons. First, their generation process utilizes crowdsourced 
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mobile data. For example, StreetLight uses application location-based service data (StreetLight Data Inc, 

2023a, 2023b). Second, some of these data are meant to be approximations of or surrogates for segment-

level counts of pedestrians and bicyclists in networks (i.e., the data are indicators that potentially may be 

used in ways analogous to segment-specific estimates that are predicted with direct demand models). For 

example, StreetLight used to provide StreetLight pedestrian or bicyclist index travelling through traffic 

analysis zones by a specific time unit (e.g., hour or day). The StreetLight index is a pedestrian or bicyclist 

trip “count” estimated by its algorithm. It is strictly not an actual count but is strongly correlated with 

observed counts. Additional trip information includes travel time, length, speed, and circuity. Simple 

demographics of travelers, such as education and ethnicity, also can be offered. The models used to 

generate these estimates tend to be proprietary, which means that users do not know exactly how the 

estimates were produced. This characteristic potentially can limit the ability of analysts to develop custom 

applications and can create dependencies on particular vendors. One study compared the StreetLight 

bicyclist index with observed bicyclist counts of 32 locations from six cities in Texas and found that the 

correlations between these two data are 0.62 and 0.69 on weekdays and weekends respectively (Turner et 

al., 2020). In the same study, the scholars also compared the StreetLight bicyclist index with bicyclist 

miles traveled calculated with Strava trip counts. They established a linear regression, in which the 

StreetLight bicyclist index is the dependent variable and the Strava based bicyclist miles traveled is the 

independent variable. They found that the correlation between these two variables is 0.94 (Turner et al., 

2020). Since May 2022, StreetLight has provided the pedestrian or bicyclist volume instead of the old 

StreetLight index. StreetLight volume is pedestrian or bicyclist trip counts estimated from multiple data 

sources and calibrated by observed historical counts (StreetLight Data Inc, 2023a, 2023b). Compared with 

StreetLight index, StreetLight volume is more comparable to observed counts. A challenge faced by 

public agencies in using data from sources like StreetLight is that algorithms are prone to change, which 

can complicate long-term trend monitoring and other comparative analyses.  

5 Overview of selected empirical papers 

Authors, study locations, travel mode, application, and method are summarized in Table 3. The 

earliest study was published in 2014. Sixteen studies focused on the context of North America. Twenty 

studies focused on the travel mode of bicycling. Although the same protocols were used to search for 

pedestrian studies, only two were identified. The imbalance between bicycle and pedestrian volumes is 

noteworthy, especially given that more people walk and are exposed to risk compared to those who 

bicycle. As to the applications of the studies, 18 studies were for traffic volume estimation. The other four 

studies applied the results of traffic volume estimation for crash analysis and/or health analysis. As to the 

method, the majority of the studies (19) used direct demand model. One used the data fusion approach to 

combine data from multiple sources. The remaining three used aggregation analysis and Strava user rate 

expansion.  
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Table 3. General information of the selected studies 

Author Study location Travel mode Application/Purpose Method 

Nishi et al. (2014) Japan Pedestrian 
Traffic volume 

estimation 
Aggregation analysis 

Strauss et al. (2015) Montreal, Canada Bicyclist Crash analysis Direct demand model 

Jestico et al. (2016) Victoria, BC, Canada Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Proulx (2016) San Francisco, US Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Haworth (2016) London, UK Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Sanders et al. (2017) Seattle, US Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Lißner et al. (2018) Dresden, Germany Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Roll (2018) 
Eugene, Springfield, 

Coburg, OR, US 
Bicyclist 

Crash analysis and health 

analysis 
Direct demand model 

Roy et al. (2019) 
Maricopa County, 

AZ, US 
Bicyclist 

Traffic volume 

estimation 
Direct demand model 

Kwigizile et al. (2019) 

Ann Arbor and 

Grand Rapids, MI, 

US 

Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Saad et al. (2019) Orange County, US Bicyclist Crash analysis Direct demand model 

Dadashova and Griffin 

(2020) 
TX, US Bicyclist 

Traffic volume 

estimation 
Direct demand model 

Dadashova et al. (2020) TX, US Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Lin and Fan (2020) Charlotte, US Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Pogodzinska et al. (2020) Krakow, Poland Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Camacho-Torregrosa et al. 

(2021) 
Spain Bicyclist Crash analysis 

Strava user rate 

expansion 

Nelson, Roy, et al. (2021) 

Boulder, Ottawa, 

Phoenix, San 

Francisco, Greater 

Victoria, North 

America 

Bicyclist 
Traffic volume 

estimation 
Direct demand model 

Munira (2021) Austin, US Bicyclist 
Traffic volume 

estimation 

Direct demand model and 

data fusion approach 

Huo et al. (2022) Nanjing, China Pedestrian 
Traffic volume 

estimation 
Aggregation analysis 

Miah, Hyun, Mattingly, 

Broach, et al. (2022) 
Portland, US Bicyclist 

Traffic volume 

estimation 
Direct demand model 

Miah, Hyun, Mattingly and 

Khan (2022) 
Portland, US Bicyclist 

Traffic volume 

estimation 
Direct demand model 

Kothuri et al. (2022) 

Portland, Bend, 

Eugene, Charlotte, 

boulder, Dallas, US 

Bicyclist 
Traffic volume 

estimation 
Direct demand model 

6 Methods for estimation 

Research question 2 concerns the types of methods used in estimation of pedestrian and bicycle traffic 

volumes with crowdsourced mobile data. The direct demand model has a wide application in selected 

studies as shown in Table 3. Direct demand models assume that pedestrian or bicyclist traffic is correlated 

with several types of variables and that these correlational relationships can be estimated through 

statistical modeling or machine learning techniques. Analysts then can use the estimated models to predict 
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pedestrian or bicyclist traffic. Direct demand models offer two advantages. First, they are easy to 

interpret. The relationship between non-motorized traffic and independent variables can be inferred from 

the coefficients of statistical models or relative importance of machine learning models. Secondly, they 

are straightforward to implement. Statistical modeling and machine learning can be performed using a 

wide range of software and packages, making it a flexible and accessible method. 

The independent variables used in the selected studies include crowdsourced mobile data (𝐶), built 

environment (𝐵𝐸), socio-demographics (𝑆𝐷), traffic facility (𝑇𝐹), time (𝑇), weather (𝑊), and other 

variables (𝑂). Equation (1) below presents the conceptual direct demand model. 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑓(𝐶, 𝐵𝐸, 𝑆𝐷, 𝑇𝐹, 𝑇,𝑊,𝑂), (1) 

where, 𝑓 specifies a modeling function, which could be a statistical model (e.g., ordinary least squared 

model or generalized linear model) or machine learning model (e.g., random forest).  

We present the modeling information of the selected studies with direct demand model in Table 4. All 

these studies estimated bicyclist volume. The 19 studies vary in their use of crowdsourced mobile data in 

modeling traffic in terms of analytic units, dependent variables, counts and sources of crowdsourced 

estimates, sample sizes, specific modeling approach or technique, and measures of evaluation. 

Specifically, 13 studies used road segment and eight studies used intersection or count location as the 

analytic unit. Nine studies, which are about half of the selected studies, estimated AADB. The other ten 

studies estimated daily, hourly, or short-time bicyclist volume. Besides observed bicyclist count, nearly 

all studies used data from smartphone fitness applications (Strava and Mon ResoVelo). Five studies used 

bicycle sharing data. Two study also applied the StreetLight bicyclist count (Kothuri et al., 2022), which 

is similar to the StreetLight bicyclist volume. It is evident that Strava data are dominant in research. There 

are two reasons for its wide application. Firstly, Strava data offer counts at the segment level. Since many 

scholars use road segments as their analysis units, they can directly incorporate segment-level Strava data 

into their research. Secondly, Strava provides free access to scholars and practitioners working in active 

travel planning, such as pedestrians and bicyclists (Strava, 2020). However, other data sources such as 

StreetLight are often not available to academic scholars and come at a cost.  

Table 4. Information of selected studies with direct demand model 

Author 

(Year) 

Analysis 

unit 

Dependent 

Variable 
Main data Sample size 

Estimation 

model 

Evaluati

on a 

Strauss et al. 

(2015) b 

Intersection 

Road 

segment 

AADB 

Observed 

bicyclist count 

Mon ResoVelo 

GPS trip data 

Signalized intersection 

model (638) 

Linear 

regression 

R2: 0.7 

Non-signalized 

intersection 

model (438) 

R2: 0.58 

Cycle track model (70) R2: 0.52 

Bicycle lane model 

(14) 
R2: 0.76 

No facility model (36) R2: 0.48 

Jestico et al. 

(2016) 

Road 

segment 

Daily bicyclist 

volume (7-9 

am and 3-6 pm 

combined) 

Observed 

bicyclist count 

Strava bicycle 

trip count 

612 
Poisson 

regression 
NA c 

Proulx (2016) 
Road 

segment 

Peak hour 

bicycle volume 

(4-7 pm 

weekday) 

Observed 

bicyclist count 

Strava bicycle 

trip count 

Bicycle sharing 

trip count 

77 

Geographically 

weighted 

regression 

NA 
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Author 

(Year) 

Analysis 

unit 

Dependent 

Variable 
Main data Sample size 

Estimation 

model 

Evaluati

on a 

Haworth 

(2016) 

Road 

segment 

Hourly 

bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

4,172 
Linear 

regression 
R2: 0.68 

Sanders et al. 

(2017) 

Road 

segment 
AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

46 
Poisson 

regression 
R2: 0.62 

Lißner et al. 

(2018) 

Road 

segment 
AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

NA 
Linear 

regression 

MAPE: 

36% 

R2:0.75 

Roll (2018) 
Road 

segment 
AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

52 

Negative 

binomial 

regression 

R2: 0.75 

Roy et al. 

(2019) 

Road 

segment 
AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

44 
Poisson 

regression 
R2: 0.64 

Kwigizile et 

al. (2019) d 

Road 

segment 

Hourly 

bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

1,520 

Negative 

binomial 

regression 

NA 

Random forest NA 

Saad et al. 

(2019) 
Intersection 

Daily bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

171 
Linear 

regression 
R2: 0.80 

Dadashova 

and Griffin 

(2020) 

Road 

segment 

Daily bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

8,813 
Mixed effect 

regression 

MAPE: 

29% 

Dadashova et 

al. (2020) 

Road 

segment 
AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

100 

Generalized 

linear 

regression with 

log link 

R2: 0.75; 

MAPE: 

29% 

Lin and Fan 

(2020) 

Road 

segment 

Short-time 

period bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

NA 
Linear 

regression 
R2: 0.61 

Pogodzinska 

et al. (2020) 

Count 

location 

Daily bicyclist 

volume 

Observed 

bicyclist count 

Bicycle sharing 

trip count 

99 
Linear 

regression 
R2: 0.92 

Nelson, Roy, 

et al. (2021) e 

Road 

segment 

AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

Boulder model (15) 

Poisson 

regression 
NA 

Intersection Ottawa model (1058) 

Road 

segment 
Phoenix model (35) 

Road 

segment 

San Francisco model 

(53) 

Road 

segment 

Greater Victoria model 

(54) 

Munira 

(2021) 
Intersection AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

NA 

Negative 

binomial 

regression and 

weighted voting 

approach 

NA 
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Notes: 
a Evaluation indices only include R2 and MAPE (Mean Absolute Percentage Error), which can be compared across models. 
b Strauss et al. (2015) estimated models for signalized intersections, non-signalized intersections, cycle track, bicycle lane, and 

road segments with no facility, respectively. 

Author 

(Year) 

Analysis 

unit 

Dependent 

Variable 
Main data Sample size 

Estimation 

model 

Evaluati

on a 

StreetLight 

bicycle trip 

count 

Bicycle sharing 

trip count 

Miah, Hyun, 

Mattingly, 

Broach, et al. 

(2022) 

Count 

location 

Daily bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

Utilitarian use 

locations (1463) 
Classification 

and 

regression tree 

NA 

Mixed use locations 

(957) 
NA 

Miah, Hyun, 

Mattingly and 

Khan (2022) 

Count 

location 

Daily bicyclist 

volume 

Observed 

bicyclist count 

Strava bicycle 

trip count 

Bicycle sharing 

trip count 

6,746 
Deep neural 

network 

R2: 0.82 

MAPE: 

86% 

Kothuri et al. 

(2022) f 

Count 

location 
AADB 

Observed 

bicyclist count 

Strava bicycle 

trip count 

StreetLight 

bicycle trip 

count 

Bicycle sharing 

trip count 

Permanent count 

locations in all cities 

(60) 

Poisson 

regression 

R2: 0.82 

MAPE: 

77% 

Permanent count 

locations in  

Dallas (23) 

R2: 0.97 

MAPE: 

38% 

All count locations in 

all cities (311) 

R2: 0.78 

MAPE: 

124% 

All count locations in 

three  

Oregon cities (227) 

R2: 0.82 

MAPE: 

107% 

All count locations in 

Portland (88) 

R2: 0.85 

MAPE: 

77% 

All count locations in 

Eugene (76) 

R2: 0.81 

MAPE: 

72% 

All count locations in 

Bend (63) 

R2: 0.47 

MAPE: 

131% 

All count locations in 

Boulder (39) 

R2: 0.90 

MAPE: 

144% 

All count locations in 

Charlotte (14) 

R2: 0.81 

MAPE: 

180% 

All count locations in 

Dallas (31) 

R2: 0.96 

MAPE: 

40% 

All count locations in 

all cities (311) 

Random forest 

NA 

All count locations in 

three  

Oregon cities (227) 

MAPE: 

150% 

All count locations in 

Portland (88) 

MAPE: 

104% 

All count locations in 

Eugene (76) 

MAPE: 

85% 
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c NA indicates the information is not available in the study. 
d Besides negative binomial regression, Kwigizile et al. (2019) applied several machine learning models, among which random 

forest has the best fitness to the data. 
e Nelson, Roy, et al. (2021) estimated models for Boulder, Ottawa, Phoenix, San Francisco, and Greater Victoria, respectively. 
f Kothuri et al. (2022) estimated Poisson regression models for permanent count locations in all six cities and in Dallas, 

respectively. They also estimated Poisson regression models for all count locations (including permanent and short-term ones) in 

all six cities, in three Oregon cities, in Portland, in Eugene, in Boulder, in Charlotte, and in Dallas, respectively. Besides Poisson 

regression models, they also estimated random forest models for all count locations in all six cities, in three Oregon cities, in 

Portland, and in Eugene, respectively. The estimation models applied by the selected studies in Table 4 could be categorized into 

two types: traditional statistical models and advanced machine learning models. Statistical models use specific probability 

distributions, such as normal distribution, Poisson distribution, and negative binomial distribution, to fit the observed data. Linear 

regression, Poisson regression, and negative binomial regression are examples of statistical models. Machine learning models use 

advanced approaches other than probability distributions, such as decision tree, support vector machine, and neural network, to fit 

the observed data. Random forest, support vector machine, and neural network are all within the family of machine learning 

models. 

Statistical models were more widely applied in the studies. Among the 19 selected studies in Table 4,  

17 used various types of statistical models, including linear regression (6), Poisson regression (5), 

negative binomial regression (3), generalized linear regression with log link (1), geographically weighted 

regression (1), and mixed effect regression (1). For these studies, the sample sizes, which indicate the 

number of locations or number of locations by time units, range from 14 to 8,813. Generally, studies that 

estimated short-time volumes have larger sample sizes. The R2 of these models ranges from 0.48 to 0.97, 

meaning that the models can explain about half to more than 90% of the variation in actual, observed 

counts. The mean absolute percentage error (MAPE) in estimation ranges from 29% to 180%.  

Machine learning models were applied in four selected studies and three of them were published in 

2022. Note that two studies (Kwigizile et al., 2019; Miah, Hyun, Mattingly, & Khan, 2022) applied 

multiple machine learning models and selected the one with the best performance and  

Table 4 only listed the best model. Kwigizile et al. (2019) compared random forest, K nearest 

neighbors, regression tree, neural network, and support vector machine, and found that random forest 

performed best in terms of RMSE (root mean squared error). Miah, Hyun, Mattingly and Khan (2022) 

estimated models with shallow neural network, deep neural network, random forest, and extreme gradient 

boosting (XGBoost), and found that deep neural network had the best performance in terms of RMSE, 

MAPE, and MAE (mean absolute error). The other two studies applied only one machine learning model 

each, specifically random forest (Kothuri et al., 2022) and classification and regression tree (Miah, Hyun, 

Mattingly, Broach, et al., 2022). It is worth noting that decision tree based approaches, such as random 

forest, regression tree, and XGBoost, were used more than other approaches. This might be because tree-

based methods usually have a better performance in fitting structured tabular data while other approaches, 

such as neural networks, are better at fitting unstructured data, including pictures, voices, and texts. The 

sample sizes of these four studies range from 76 to 6,746. The MAPE ranges from 85% to 150%. 

Besides the direct demand model, three other methods were applied in the literature: data fusion, 

aggregation analysis and Strava user rate expansion. Because they were only applied in three studies, we 

briefly describe the methods in this review. Munira (2021) applied a data fusion approach called weighted 

voting to aggregate the bicyclist volumes estimated from multiple data sources. Aggregation analysis was 

used by Nishi et al. (2014) and Huo et al. (2022) to estimate pedestrian traffic with application location-

based service data and cellular signal data, respectively. The general idea is to extract pedestrian activities 

from these data and aggregate them into defined analysis zones. Strava user rate expansion was proposed 

by Camacho-Torregrosa et al. (2021) to compute bicyclist traffic. Strava user rate indicates the ratio 

between Strava bicyclist count and observed bicyclist count. The authors assumed that Strava user rate is 

consistent for locations sharing similar characteristics. Therefore, they can calculate the bicyclist traffic 

based on Strava user rate and Strava trip count. 
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7 The role of crowdsourced variables 

Research question 3 concerned the performance of crowdsourced mobile data related variables in 

producing valid estimates of pedestrian and bicycle volumes. One of the advantages of statistical models 

is that they provide significance levels of the independent variables through statistical testing. The 

information of significance levels is very helpful in determining what factors are important to estimating 

the pedestrian and bicyclist volumes. Correlation indicates the direction of the linear relationship between 

the dependent and independent variables. Elasticity measures the percentage change in the dependent 

variable corresponding to a 1% change in the independent variable. After reviewing the 17 studies using 

statistical models, we summarized the significance levels, correlations and elasticities of crowdsourced 

mobile data (Table 5).    
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Table 5. Correlation and elasticity of crowdsourced mobile data in statistical models a

Author (Year) Crowdsourced mobile variable Elasticity b Ranking 

Strauss et al. (2015) 

• Signalized intersection model Mon ResoVelo bicycle trip count (+) 

NA c NA 

• Non-signalized intersection model Mon ResoVelo bicycle trip count (+) 

• Cycle track model Mon ResoVelo bicycle trip count (+) 

• Bicycle lane model Mon ResoVelo bicycle trip count (+) 

• No bicycle facility model Mon ResoVelo bicycle trip count (+) 

Jestico et al. (2016) Strava bicycle trip count (+) NA NA 

Proulx (2016) 
Strava bicycle trip count (NP) 

NA NA 
Bicycle sharing trip count (NP) 

Haworth (2016) Strava bicycle trip count (+) NA NA 

Sanders et al. (2017) Strava bicycle trip count (+) NA NA 

Lißner et al. (2018) Strava bicycle trip count (+) NA NA 

Roll (2018) Strava bicycle trip count (NP) NA NA 

Roy et al. (2019) Strava bicycle trip count (+) NA NA 

Kwigizile et al. (2019) Strava bicycle trip count (+) 0.02% 13/14 

Saad et al. (2019) Strava bicycle trip count (+) NA NA 

Dadashova and Griffin (2020) Strava bicycle trip count (+) NA NA 

Dadashova et al. (2020) Strava bicycle trip count (+) 0.18% 8/9 

Lin and Fan (2020) Strava bicycle trip count (+) NA NA 

Pogodzinska et al. (2020) Bicycle sharing trip count (+) NA NA 

Nelson, Roy, et al. (2021) 

• Boulder model

Strava bicycle trip count (+) 

NA NA 

Percentage of Strava commute bicycle trips 

(-) 

• Ottawa model

Strava bicycle trip count (+) 

Percentage of Strava commute bicycle trips 

(+) 

• Phoenix model

Strava bicycle trip count (+) 

Percentage of Strava commute bicycle trips 

(+) 

• San Francisco model

Strava bicycle trip count (+) 

Percentage of Strava commute bicycle trips 

(-) 

• Greater Victoria model

Strava bicycle trip count (+) 

Percentage of Strava commute bicycle trips 

(-) 

Munira (2021) 

Strava bicycle trip count (NP) 

NA NA StreetLight bicycle trip count (NP) 

Bicycle sharing trip count (NP) 

Kothuri et al. (2022) d 

• Permanent count locations in all cities
Strava and StreetLight bicycle trip count 

(+) 
0.26% NA 

• Permanent count locations in Dallas
Strava and StreetLight bicycle trip count 

(+) 
0.36% NA 

• All count locations in all cities
Strava bicycle trip count (+) 0.54% 2/7 

StreetLight bicycle trip count (+) 0.18% 5/7 

• All count locations in three Oregon cities Strava bicycle commute trip count (+) 0.62% 2/10 

• All count locations in Portland
Strava bicycle trip count (+) 0.63% 4/9 

StreetLight bicycle trip count (+) 0.21% 7/9 

• All count locations in Eugene
Strava bicycle trip count (+) 0.65% 2/5 

StreetLight bicycle trip count (+) 0.18% 4/5 

• All count locations in Bend No significant variable NA NA 

• All count locations in Boulder Strava bicycle trip count (+) 0.46% 2/3 

• All count locations in Charlotte No significant variable NA NA 

• All count locations in Dallas
Strava and StreetLight bicycle trip count 

(+) 
0.39% 2/6 
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Notes:  
a + denotes a significant and positive relationship; - denotes a significant and negative relationship; NP denotes no p-value, 

indicating that the variable was included in the final model, but the study did not provide the corresponding p-value.  
b Calculation of elasticity is based on the method introduced in Ewing and Cervero (2010). For a log-linear form regression (i.e., 

the dependent variable is transformed with logarithm function and the independent variable is in its original form), the elasticity 

is 𝛽 × 𝑥̅. For a log-log form regression, the elasticity is 𝛽. For a linear-linear form regression, the elasticity is 𝛽 ×
𝑥̅

𝑦̅
. 𝛽 is the 

coefficient and 𝑥̅ is the average value of the corresponding independent variable. 𝑦̅ is the average value of the dependent variable. 

Some studies have no elasticities listed because they did not provide the information of 𝑥̅ and 𝑦̅ or did not use log-log form in the 

statistical models. 
c NA indicates the related information is not available in the study. 
d All models considered five crowdsourced mobile variables: Strava bicycle trip count, StreetLight bicycle trip count, Strava and 

StreetLight bicycle trip count, Strava commute bicycle trip count, and Strava non-commute bicycle trip count. All variables of 

trip counts were transformed with the logarithm function before including in the modeling process. The table did not include the 

logarithm form to simplify the results and improve the readiness of the table. 

In Table 5, all 17 studies applied crowdsourced mobile data as independent variables to help estimate 

or predict bicyclist traffic volumes. A commonly used form of crowdsourced mobile data is an aggregated 

bicycle trip count on road segment. For intersections, Strauss et al. (2015) used the bicycle trip count 

aggregated from linked road segments equipped with different bicycle facilities, and Saad et al. (2019) 

used total bicyclists entering the intersections from all linked road segments. Kothuri et al. (2022) not 

only considered independent Strava or StreetLight trip count but also tested the sum of these two data 

sources in their models. They also transformed these trip count variables with the logarithm function to 

better incorporate the potential nonlinear relationships. In most cases, at least one crowdsourced bicycle 

trip count variable is significant and has a positive relationship with observed bicyclist traffic except for 

two cases. Kothuri et al. (2022) considered three types of crowdsourced trip counts, including Strava, 

StreetLight, and sum of Strava and StreetLight, in their models with all count locations in three Oregon 

cities, in Bend, or in Charlotte. However, none of these variables are significant in the models for 

unknown reasons. One possible explanation is the relatively small sample size but large variance of the 

observed bicyclist counts. In addition, Proulx (2016), Roll (2018), and Munira (2021) did not provide 

information of significance level. 

Besides the trip count, two studies considered commuting bicycle trip count in their models as the 

crowdsourced mobile data provide the information about whether the trip is commuting or not. Nelson, 

Roy, et al. (2021) included percentage of Strava bicycle trips that are commuting trips in their city models 

and three models showed that this variable is positively correlated with bicyclist traffic. Kothuri et al. 

(2022) considered Strava commute bicycle trip count and non-commute bicycle trip count in their models. 

However, only the model with all count locations in three Oregon cities shows there exists a significant 

and positive relationship between Strava commute bicycle trips and bicyclist traffic volume. The various 

results of the commuting bicycle trip count variable might be due to its potential high correlation with 

total crowdsourced bicycle trip count. 

Among the 17 papers that reported statistical models, only three reported data from which elasticities 

could be calculated. Across the models reported in these papers, the elasticities associated with the 

crowdsourced mobile variables range from 0.02% to 0.65%, with the majority falling within the narrower 

interval of 0.18% to 0.65%. In comparison to other variables within the same statistical models, the 

elasticities of crowdsourced mobile variables occupy varying ranks. In two studies (Dadashova et al., 

2020; Kwigizile et al., 2019), the elasticities of Strava bicycle trip counts were notably low, registering at 

0.02% and 0.18%, respectively. In both studies, these elasticities were ranked second lowest among all 

variables examined. However, in Kothuri et al. (2022), the elasticities of Strava bicycle trip counts were 

among the highest-ranked variables.  

In Table 6, we present the crowdsourced mobile variables applied in machine learning models and 

their corresponding relative importance. Although machine learning models cannot provide significance 

levels, they can generate relative importance of the independent variables to measure their contributions 
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to estimating the dependent variable. Relative importance is the percentage of variance reduction by one 

independent variable among the total variance reduction by all the independent variables (Molnar, 2020). 

With that said, its value is between 0 and 100%. A larger value of relative importance indicates a larger 

contribution of the independent variable. Two studies reported the relative importance of the 

crowdsourced variables considered in their machine learning models. Miah, Hyun, Mattingly and Khan 

(2022) reported the relative importance of Strava bicycle trip count in their two machine learning models. 

In the random forest model, the relative importance is 16%, ranking first among all 45 variables 

considered in the model. In the XGBoost model, the relative importance is 24% with a ranking of second 

place. Kothuri et al. (2022) found that most of the crowdsourced mobile variables considered in their 

random forest are ranked top among all 99 variables, with the relative importance ranging from 2% to 

11%. 

Table 6. Relative importance of crowdsourced mobile variables in machine learning models 

Author (Year) Crowdsourced mobile variable Relative importance Ranking 

Kwigizile et al. (2019) Strava bicycle trip count NA a NA 

Miah, Hyun, Mattingly, Broach, 

et al. (2022) 
Strava bicycle trip count NA NA 

Miah, Hyun, Mattingly and Khan 

(2022) b 
Strava bicycle trip count 

Random forest: 16% 1/45 

XGBoost: 24% 2/45 

Kothuri et al. (2022) c 

• All count locations in all

cities

Sum of log of Strava bicycle trip 

count and log of StreetLight 

bicycle trip count 

10% 1/99 

Log of Strava commute bicycle 

trip count 
9% 2/99 

Strava commute bicycle trip 

count 
8% 3/99 

• All count locations in three

Oregon cities

Sum of log of Strava bicycle trip 

count and log of StreetLight 

bicycle trip count 

10% 1/99 

Log of Strava commute bicycle 

trip count 
8.2% 2/99 

Strava commute bicycle trip 

count 
7.5% 3/99 

• All count locations in

Portland

Sum of log of Strava bicycle trip 

count and log of StreetLight 

bicycle trip count 

11% 1/99 

Log of Strava commute bicycle 

trip count 
10% 2/99 

Log of Strava bicycle trip count 9% 3/99 

• All count locations in

Eugene

Log of Strava commute bicycle 

trip count 
7% 3/99 

Strava commute bicycle trip 

count 
6% 4/99 

Sum of log of Strava bicycle trip 

count and log of StreetLight 

bicycle trip count 

4% 7/99 

Notes:  
a NA indicates the related information is not available in the study. 
b The authors only provided the relative importance of random forest and XGBoost models while they applied multiple machine 

learning approaches.  
c All models considered five crowdsourced mobile variables: Strava bicycle trip count, StreetLight bicycle trip count, Strava and 

StreetLight bicycle trip count, Strava commute bicycle trip count, and Strava non-commute bicycle trip count. Both the original 

and logarithm forms of these crowdsourced mobile variables were included in the modeling process. To save space, we only 

listed the three most important crowdsourced mobile variables. 
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In addition to the measures of correlation, elasticity, and relative importance used to assess 

independent variables, several studies found that models with crowdsourced mobile data perform better 

than those without (i.e., they mostly have better fitness and their predicted volumes are more accurate, see 

Table 7). Proulx (2016) found that inclusion of Strava data reduces RMSE by 30.5 to 39.4 and inclusion 

of bicycle sharing data reduces RMSE by 1.2 to 8.5. Sanders et al. (2017) found their Poisson regression 

model with Strava bicycle trip count variable not only has a better fitness in terms of R2 but also included 

fewer independent variables (i.e., a more parsimonious form). Kothuri et al. (2022) had similar findings. 

Roll (2018) found that their models with Strava bicycle trip count perform better in terms of R2. Kwigizile 

et al. (2019) applied both statistical and machine learning models to construct models with and without 

Strava bicycle trip counts. They found that all models with Strava data have lower RMSE and higher R2 

than those without. Miah, Hyun, Mattingly, Broach, et al. (2022) had similar comparison results with their 

machine learning models. In addition, Proulx (2016) showed that inclusion of both Strava and bicycle 

sharing data could further improve the model performance than inclusion of single type of data. However, 

Kothuri et al. (2022) found that inclusion of bicycle sharing data can hardly improve model performance 

when the model has already included Strava and StreetLight data. 

Table 7. Model performance improved by crowdsourced mobile data 

8 Discussion and conclusion 

In this study, we applied a systematic literature review approach to explore the types of crowdsourced 

mobile data and methods that have been used to estimate pedestrian and bicyclist traffic volume. After 

searching the scholarly databases with the keywords related to our topics and screening the search results 

with several criteria in two rounds, we summarized 10 related literature reviews and included 22 

empirical studies in our review. We then extracted key information related to our topics from the selected 

studies.  

With respect to our first research question (i.e., types of crowdsourced mobile data used in traffic 

volume estimation), we identified four distinct types of crowdsourced mobile data: bicycle sharing data, 

fitness tracking application data, application location-based service data, and cellular signal data. 

Author (Year) Model performance improvement by crowdsourced mobile data 

Proulx (2016) 

• Inclusion of Strava data reduces RMSE by 30.5 to 39.4

• Inclusion of bicycle sharing data reduces RMSE by 1.2 to 8.5

• Inclusion of both Strava and bicycle sharing data improves RMSE by 32.2 to 43.3

Sanders et al. (2017) 

• The inclusion of Strava data improves R2 from 0.57 to 0.62.

• At the same time, the model with Strava data variable include fewer independent

variables.

Roll (2018) • Inclusion of Strava data improves R2 from 0.68 to 0.77

Kwigizile et al. (2019) 

Negative binomial regression: 

• Inclusion of Strava data reduces RMSE by 0.97 and increases R2 by 0.08.

Machine learning: 

• Inclusion of Strava data reduces RMSE by 0.66 to 0.87 and increases R2 by 0.05 to

0.08.

Miah, Hyun, Mattingly, 

Broach, et al. (2022) 

Inclusion of Strava data reduces median absolute percentage error 

• by 9 to 80 percentage points for utilitarian use locations

• by 1 to 12 percentage points for mixed usage locations

Kothuri et al. (2022) 

Poisson regression: 

• Inclusion of Strava data improves R2 by 0.003 to 0.2

• Inclusion of StreetLight improves R2 by 0.01 to 0.18

• Inclusion of both Strava and StreetLight improves R2 by 0.04 to 0.24

Random forest: 

• Inclusion of bicycle sharing data did not improve performance when there exist Strava

and StreetLight data
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Compared with traditional observed count data, crowdsourced mobile data have larger coverage of 

geospatial and temporal range and lower cost data collection. However, they are biased toward a certain 

population based on their mobile data sources. For example, fitness tacking application data are biased 

toward runners and cyclists as they are collected from smartphone fitness applications such as Strava and 

Mon ResoVelo. In addition, cellular signal data have relatively lower spatial precision. Strava data have 

been used more than other data sources in the studies analyzed in this review. An important finding is that 

the vast majority of studies using crowdsourced data have focused on bicycle volumes and not pedestrian 

volumes.  

Researchers have applied four different methods to use crowdsourced mobile data to estimate 

pedestrian and bicyclist volumes, including direct demand modeling, data fusion, aggregation analysis, 

and Strava user ratio expansion. The direct demand modeling approach dominates among studies 

identified for this review. All studies with direct demand modeling estimated bicyclist traffic volume. 

Statistical models are more frequently used to construct the relationships between various factors and 

bicyclist traffic volumes while machine learning models have been applied in recent years.  

Our review results showed that crowdsourced mobile data related variables not only have significant 

correlations with observed bicyclist count in statistical models but also have relatively larger relative 

importance than other independent variables in machine learning models. Furthermore, the inclusion of 

crowdsourced mobile data improves the model prediction performance in both statistical models and 

machine learning models. These results confirm the important role of crowdsourced mobile data in the 

estimation of bicyclist volumes. However, we also found that a majority of papers have not reported or 

included in their papers the data needed for estimation of key metrics such as elasticities. Overall, 

researchers and practitioners alike will be better served with better information about the independent 

variables in models that have the greatest effects on observed volumes.  

Based on the review results, we identified four research topics related to the application of 

crowdsourced mobile data in the estimation of pedestrian and bicycle traffic that deserve more attention 

in future studies. 

8.1 Increase crowdsourced mobile data use in estimating pedestrian traffic 

One finding from this review is that most of the selected studies (20) used crowdsourced mobile data 

to estimate bicyclist traffic. For studies with direct demand modeling, all of them estimated bicyclist 

traffic. A research gap is that very few studies have incorporated crowdsourced mobile data in pedestrian 

traffic volume estimation. Many crowdsourced mobile data provide pedestrian-related information. For 

example, Strava provides trip counts related to walking, running, and hiking, and StreetLight provides 

estimated pedestrian volumes. Similar to bicycle trip counts generated from crowdsourced mobile data, 

these pedestrian trip counts share the advantages in terms of large spatial and temporal coverage and low 

collection cost, and the disadvantages of biased population characteristics. However, due to the different 

patterns between pedestrian and bicyclist trips, pedestrian trip counts generated by crowdsourced mobile 

data may perform differently in traffic estimation models with crowdsourced bicyclist trip counts. For 

example, how would crowdsourced mobile data related variables perform in the estimation of pedestrian 

traffic? How much improvement can crowdsourced mobile data bring to pedestrian estimation models? 

Addressing these questions and similar ones could help improve the current works in estimating 

pedestrian traffic and provides better support for works such as pedestrian facility planning and pedestrian 

crash analysis. 

8.2 Compare crowdsourced data performance in non-motorized traffic estimation 

Crowdsourced mobile data vary in spatial coverage, temporal patterns, and accuracy, potentially 

affecting their performance in estimating pedestrian and bicyclist traffic across different modes, contexts, 

and regions. Most of the studies, however, only apply the Strava data in estimating pedestrian and 

bicyclist estimation. While Strava has advantage such as providing free access to scholars and offering 
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segment-level counts, other crowdsourced mobile data can also provide valuable contributions as they 

have different user demographics, geographic coverage, and data granularity. For instance, StreetLight 

and Cuebiq data combine multiple data sources. Therefore, they can capture a more diverse user base and 

offer a more representative sample for pedestrian and bicyclist estimation than Strava. Their performance 

could be different in terms of travel mode, local context, regional text, and more. How do these 

crowdsourced mobile data perform differently in estimating pedestrian and bicyclist traffic? How do they 

perform differently in locations with different land-use patterns (e.g., commercial area, residential area, 

and open space)? How do they perform differently in different cities or regions? Among the reviewed 

studies, very few of them compare the performance of different types of crowdsourced mobile data in the 

estimation of non-motorized traffic. Exceptions include Proulx (2016) and Kothuri et al. (2022), both of 

whom compared multiple sources (e.g., bicycle sharing, Strava, and StreetLight) of data in estimating 

bicyclist traffic. More studies are still needed in more areas with different contexts to test the 

generalizability of their findings. Local transportation agencies may have access to multiple 

crowdsourced mobile data sources or are in the process to purchase/request additional data sources. 

Understanding the heterogeneity of the crowdsourced mobile data in estimating pedestrian and bicyclist 

traffic could help local transportation agencies in deciding which data sources they need most or how they 

can achieve better performance with less investment in purchasing the licenses. 

8.3 Incorporate multiple types of crowdsourced data to further improve model performance 

Leveraging multiple types of crowdsourced mobile data potentially could yield more nuanced and 

comprehensive results compared with using just one data type in estimating pedestrian and bicyclist 

traffic (Proulx, 2016). When different data categories are combined, the resulting data offers a richer, 

multi-dimensional view of user behavior and travel patterns. However, this approach cannot guarantee 

model performance improvement. Some crowdsourced mobile data have a larger coverage in terms of 

time, space, and population than others. For example, both Strava and StreetLight data have a larger area 

coverage than bicycle sharing data. Inclusion of bicycle sharing data to models with Strava and 

StreetLight data may result in limited improvement of model performance (Kothuri et al., 2022). In 

addition, the marginal improvement in model performance needs to be assessed against the marginal costs 

of model refinement and improvement. We hypothesize that, as more types of data are integrated into a 

demand model, the marginal improvements from each new data source may diminish. There clearly 

remains a need to explore how different combinations of crowdsourced mobile data improve model 

performance and whether this improvement could generate benefits that exceed the associated costs. Such 

analyses would provide valuable guidance for researchers, policymakers, and industry stakeholders in 

making informed decisions about the optimal use of crowdsourced mobile data for estimating pedestrian 

and bicyclist traffic volumes.  

8.4 Expand methods using crowdsourced data for non-motorized traffic estimation 

Crowdsourced mobile data could be applied with other popular methods to estimate pedestrian and 

bicycle traffic, including four-step models and simulation-based models. In four-step models, the first two 

steps are estimating the number of trips generated and determining where these trips are likely to go. 

Traditionally, household travel survey data are used to carry out these two steps. However, household 

surveys are expensive to collect and can only provide reliable estimates at the census block group or tract 

levels. Crowdsourced mobile data may outperform household travel surveys in certain respects. For 

example, the related collection cost for crowdsourced mobile data is low and the data provides granular 

estimates in terms of trip counts and origin and destination (OD) information in refined zones. Agent-

based models use agents with specific behaviors, preferences, and decision-making rules to simulate 

walking and cycling trips in the real world. Crowdsourced mobile can provide frequency and duration of 

walking and cycling trips, the speed and distance traveled, and the types of routes preferred by cyclists 
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and pedestrians for calibrating the behavior of individual agents in the model, such as their travel patterns 

and route selections.  
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