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Abstract: Understanding the connections between the built environment 

and travel mode choice is a major research topic in transportation. 

However, existing studies usually examine the relationship through trip-

based analyses rather than tour-based approaches. A tour consists of 

multiple trips that originate and end at the same place, which is 

increasingly considered the more appropriate analysis unit for travel 

behaviors. Applying a tour-based approach, this study employs random 

forest to investigate the non-linear impacts of built environment factors 

and tour attributes on different mode combinations of a tour. We find that 

tour attributes and connectivity-related variables (e.g., block size and 

intersection density) have a strong association with the use of active 

travel modes when their values are within a certain threshold. In addition, 

capturing mode change behaviors offers more nuanced understanding of 

how various built environment variables shape people’s decision to 

combine modes in a tour. 

 

Keywords: Non-linear effects, built environment, tour-based mode 

choice, SHAP, random forest 

Article history: 

Received: June 18, 2023 

Received in revised form: 

October 15, 2023  

Accepted: November 13, 

2023 

Available online: March 

20, 2024 

 

 

1 Introduction 

As land-use policies are frequently promoted as strategies to support sustainable 

transportation, considerable empirical work has been done to investigate the link between 

the built environment and travel mode choice. Existing research in this area has mostly 

adopted a trip-based approach to perform the analysis by assuming that single trip 

characteristics (i.e., mode and destination) is a function of some explanatory variable 

related to this trip. Recently, trip chaining has become an essential part of people’s daily 

travel. Many studies found that tour-based approaches can better capture and represent 

the travel patterns as tour-based approaches study reflects trip chaining behavior and tour 

formation (Daisy et al., 2018; Ho & Mulley, 2013; Van Acker & Witlox, 2011). Usually, 

a tour consists of multiple trips that originate and end at the same place, such as 

someone’s home (Axhausen, 2007). It assumes that people do not make separate 

https://jtlu.org/index.php/jtlu
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decisions at the trip level, but schedule activities at the tour level given their 

spatiotemporal constraints. For example, a person chooses to drive to their nearby 

workplace instead of walking because they must run some errands far away afterward. In 

such a case, the commute mode choice is not determined by characteristics of the 

individual trip (i.e., the location of workplace), but involves a complex planning process 

for engaging multiple activities with time-space constraints in a tour. Hence, tour-base 

approaches can provide more comprehensive understanding of the connection between 

the built environment and travel behavior (Frank et al., 2008; Lee, 2016). 
Despite recent efforts to incorporate tour-based approaches into studying the 

relationship between the built environment and mode choice, two major research gaps 

remain. First, a tour may involve the use of multiple modes. Most studies simplify the 

mode choice by using the most representative mode, which means that a single travel 

mode is assumed to represent all legs of the tour (Daisy et al., 2018; Ho & Mulley, 2013). 

By assuming away the possibility that people change travel mode in a tour, these studies 

have disregarded the interdependence among different facets of mode selection (Hasnine 

& Nurul Habib, 2021). Considering mode change behavior allows new insights into the 

travel patterns of using different modes at the tour level. For instance, by investigating all 

the combinations of mode choices in a tour, Miriam and Marco (2016) found that transit 

is more likely to be combined with other modes than used alone, which indicates that 

researchers should go beyond examining a single travel mode when public transit is part 

of the analysis. Moreover, understanding the travel patterns of different mode 

combinations with transit will better inform planning efforts that aim to promote 

sustainable travel.   
Second, many previous studies have operated under the assumption of linear 

relationships between built environment variables and travel behavior, proven to be over-

simplified according to recent studies. Using machine learning (ML) methods, 

researchers have discovered non-linear and threshold effects of the built environment on 

travel behavior (Ding et al., 2021; Hong, 2017; Tao, Wang, et al., 2020). For example, 

while conventional wisdom has suggested that increasing land-use diversity can promote 

transit ridership, Shao et al. (2020) have shown that the land-use entropy needs to be 

greater than 0.5 to have an effective impact on transit use. Traditional statistical models 

such as linear or logistic regression tend to focus on whether and how much built-

environment variables shape travel; by revealing non-linear and threshold relationships, 

machine learning methods can provide supplementary insights such as informing 

planning practitioners of the optimal range of the built environment on promoting active 

travel modes. Despite an increasing number of studies that apply machine learning 

methods to examine the built-environment and travel-behavior connection, existing work 

still needs to integrate these efforts with the tour-based approach discussed above. 
This study fills these research gaps by employing random forest (RF) to examine the 

non-linear impacts of the built environment factors on mode choice using a tour-based 

approach. It contributes to the existing literature in two aspects. First, assessing the 

different combinations of modes in a tour allows us to account for the interdependency of 

various modes, thus providing a comprehensive picture of how the built environment 

affects people’s decision to combine various modes at the tour level.  Second, this study 

enriches the understanding of travel behavior research by investigating the threshold 

impacts of the built environment on tour-based mode choice. It interprets the models by 

presenting the relative contribution of each variable with SHapley Additive exPlanations 

(SHAP) method and illustrating the non-linear built environment-active travel 

associations with accumulated local effects (ALE) plots. 

The rest of the paper is organized as follows. In Section 2, we review the literature on 

the relationship between the built environment and mode choice using a tour-based 
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approach and identify research gaps. In Section 3, we introduce the data and the method. 

In Section 4, we discuss the results. In the last section, we summarize the key findings 

and discuss the study’s implications for planning practice. 

 
 

2 Literature review 

2.1 Tour-based approaches to study the built-environment and mode-choice  
relationship 

The link between the built environment and mode choice decision has been studied 

extensively over the past several decades, but the results have been mixed. Some authors, 

such as Duncan (2016) and Stead and Marshall (2001) concluded that the influence of the 

built environment is expected to be minor. On the other hand, Ewing and Cervero (2017) 

provided strong evidence that a dense area with high connectivity generally reduces car 

driving. For example, while many studies confirm the role of density in promoting non-

auto modes (Barnes, 2001; Chatman, 2003; Concas & DeSalvo, 2012; Gehrke & Welch, 

2017), some contend that the impact of density is limited (Ewing & Cervero, 2001, 2010, 

2017; Handy, 1997). This is likely because the features that come with density (i.e., 

limited parking spaces and congestion) do not have as much of an effect on non-auto 

travel. Such inconsistent results may result from using data from different geographical 

areas with different lifestyle and demographic backgrounds, different time horizons, 

various ways of measuring the built environment, and different units of analysis. 
Recent studies found that tour-based approaches can better capture and represent the 

relationship of mode choice and built environment than trip-based approaches (Antipova 

& Wang, 2010; Daisy et al., 2018; Ho & Mulley, 2013). Lund et al. (2004) found that 

more mixed-use environments near residences promote chain trips by transit and walking, 

implying that people would like to walk to take transit when living in a mixed land-use 

environment. Fang (2022) identified the positive indirect effect of density and design on 

non-auto use through the analysis of tours with multiple activities clustered at one 

destination. Her study found that a dense development with a quality street design at 

destination encourages people to carry out activities in proximity, thus resulting in greater 

non-auto use.  

However, previous tour-based studies have only considered the main mode as a 

dependent variable in estimating the role of the built environment on travel. They either 

decide on the main mode based on a hierarchy of modes (Chowdhury & Scott, 2018) or 

using the mode of the main activity of a tour (Ho & Mulley, 2013; Primerano et al., 

2008). These practices essentially use trip-based method to address a tour-base problem 

(Hasnine & Nurul Habib, 2021). Notably, tour-based mode choice has been explored 

thoroughly in the travel demand modeling studies. Some studies adopt combinatorial 

tour-based mode choice. For example, Bhat (2004) predicted combinatorial tour-based 

mode choice using multinomial logit models. However, this method is only suitable for 

simpler trip combinations. Recently, some advanced models have captured all trips 

within a tour by considering the dynamics of interdependence among various aspects of 

mode choices (Cirillo & Axhausen, 2010; Han et al. 2021; Hasnine, 2019; Saleem et al., 

2018). These models allow estimating the impact of each trip destination on the 

corresponding trip mode in a tour sequentially. They assume that people decide the trip 

mode during a tour when travel patterns unfold; thus, each trip mode choice is assessed 

on the information for that trip and adjacent trips. However, this approach might not 
accurately represent some travelers’ decision-making processes. In many cases, travelers 

have to make decisions in advance, as some travel options (i.e., mode and activity) might 

become unavailable in the middle of the tour (Primerano et al., 2008). Fang et al. (2022) 
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found that individual’s main mode choice is influenced not only by the built environment 

of the main destination, but is also strongly affected by the activity place with the least 

compact built environment. For example, people may use transit over biking because the 

last destination (absent of bike lane) is unsafe for biking.   

 

2.2 Non-linear effects in the built environment and travel behavior connection 

Recently, the non-linear associations between built environment factors and travel 

have attracted growing research attention (Xu et al., 2021; Wang et al., 2022; Yang, Ao et 

al., 2021; Yang et al., 2022). For example, Ding et al. (2021) examined the non-linear 

association between built environment factors and public transit use for commuting 

purpose using a semi-parametric multilevel mixed logit model. Their results show a non-

linear relationship and spatial heterogeneity across traffic analysis zones (TAZ). Tao et 

al. (2020) adopted the gradient boosting decision tree technique to examine the correlates 

between built environment factors and walking distance to transit service. They found 

that built environment factors have the greatest predictive power on walking distance 

among the examined factors, and the effects are non-linear. Other studies investigated the 

non-linear effects between the built environment and other travel outcomes, including 

transportation emissions (Hong, 2017), rail transit ridership (Ding et al., 2019), travel 

time allocation (Wang & Ozbilen, 2020), and urban vitality (Xiao et al., 2021; Yang, Cao 

et al., 2021).  

Compared to ML models, well-developed traditional statistical models have the 

advantage of being simpler to understand, user-friendly outcomes of correlation and 

significance, and a more straightforward model structure. However, since researchers 

usually assume linear relationships when applying statistical models to study the built-

environment and travel-behavior relationship, variable associations are not well 

represented if the actual relationship is non-linear (Ley et al., 2022). ML methods usually 

contain less assumptions about the data relationships, allowing them to explore more 

flexible modeling structures. This capability enables ML to often capture the variable 

associations more effectively. A notable application of ML in the built-environment and 

travel-behavior literature is the identification of threshold effects, which can help 

planners and policymakers determine the most effective range of these variables to 

promote sustainable travel. For instance, Wali et al. (2021) found that walking can be 

effectively encouraged with the intersection density in the range of 100-200 

intersections/km2, and Tao et al. (2020) indicated that the use of active travel modes 

decreases substantially when the distance to park increases from 1 to 0.2 miles. These 

findings offer planning and design guidance for effective land-use strategy 

implementation to support health travel. 

Some recent studies have concentrated on examining the non-linear impacts of the 

built environment on travel mode. Park et al. (2020) employed a generalized additive 

model (GAM) to identify an optimal range of the built-environment factors that 

maximize the probability of walking and transit use. This study shows that the possibility 

of walking rather than driving peaks at an activity density of 40,000 while controlling for 

other variables. Liu et al. (2021) examined the non-linear associations between the built 

environment and walking/biking for work and shop purposes. Their results show that 

there are non-linear associations between all built environment factors and the walk/bike 

mode, and the connections for commuting tend to be U or V-shaped. Those studies reveal 

the intricate effects of the built environment on mode choice and indicate that decision-

makers should meticulously disentangle this complexity to come to more effective 

planning policies.  
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While most studies examined the non-linear association at the trip level, Kim (2021) 

found that tour-related attributes exhibit significant interactions with travel modes and 

hold substantial importance in understanding travel behavior. His results imply that the 

tour-based analysis is essential for a better understanding of a traveler’s mode choice 

decision. However, little effort has been made to understand the non-linear influence of 

the built environment on mode choice at the tour level. This study aims to fill the gap by 

investigating the non-linear effects of built-environment variables and tour-based 

attributes on tour-based mode choice decisions. 

3 Data 

3.1 Study area and data sources  

The area selected for this study is the area of Portland Metropolitan located in Oregon, 

which cover parts of Clackamas, Multnomah, and Washington Counties (Figure 1). 

Portland, as the core of the area, is served by a comprehensive public transportation 

system that includes bus service, a light rail network, a streetcar, and a bikesharing 

system. The city has a strong emphasis on fostering transit-oriented development (TOD) 

and promoting sustainable travel, and so examining the impacts of the built environment 

on travel mode has great policy significance. 

 

Figure 1. Study area 

Data on travel and activities were obtained from the 2011 Oregon Travel and Activity 

Survey (OTAS), which is the most recent and comprehensive household travel survey 

conducted in Oregon since 2011. After data cleaning, a total of 9,969 home-based tours 

were included in the final analysis.  

3.2 Travel mode combinations 

This study captured the mode change behavior in a tour. Initially, we had a 

comprehensive set of travel modes for a trip, including car driver, car passenger, transit, 

bike, and walk. There are 25 mode combinations in our dataset, as shown in Table 1. For 

modeling, we merged some trip modes to increase the sample sizes of the minority 
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classes with the following rules: 1) car driver and car passenger were jointly considered 

as the car alternative; 2) walk and bike were jointly considered as active mode (WB); 3) 

car & transit & WB was merged into car & transit. Finally, we obtained six mode 

combinations: car, WB, transit, car & transit, car & WB, and transit & WB (See Table 2). 

 

Table 1. All mode combinations in the sampled data 

 

 Note: D: car driver; P: car passenger; W: walk; T: Transit; B: bike. 

 

 Table 2. Distribution of merged mode combinations by tour complexity 

 

 

These descriptive statistics allow one to better understand the distribution of the mode 

combinations in the dataset. The percentages presented in Table 2 summarize the 

multimodality behaviors. As expected, people typically rely on a single mode when they 

travel. The car alternative is the predominant mode accounting for 78.2%, and WB and 

transit account for 10.2% and 4.7%, respectively. By contrast, the share of each multi-

modal combination is below 3%. In addition, we find that trip frequency is an essential 

determinant of mode choice, which the trip-based models have generally ignored. Simple 

tours consist of one activity, while complex tours include multiple ones. Among car 

travel, 56.0% are simple tours, and 44.0 % are complex tours. For WB travel, over 77.5% 
are simple tours, which is reasonable as people often have low accessibility to various 

activities within walking or biking distance. Transit travel has the highest percentage of 

Mode 

Combinations 
Count 

Mode 

Combinations 
Count 

Mode 

Combinations 
Count 

D 7618 DW 181 BTW 6 

P 2386 DT 79 DPT 5 

W 1088 PTW 64 DPTW 4 

T 920 BW 44 BDW 3 

B 394 BP 25 BDT 1 

PT 365 DPW 24 BPTW 1 

TW 217 DTW 23 BPW 1 

PW 214 BD 19   

DP 183 BT 19   

Merged Mode 

Combinations 
Count Share Simple Tours Complex Tours 

Average Number  

of Trips 

Car 7585 78.2% 56.0% 44.0% 1.9 

WB 991 10.2% 77.5% 22.5% 1.4 

Transit 452 4.7% 88.9% 11.1% 1.1 

Car & WB 261 2.7% 10.0% 90.0% 3.7 

Car & Transit 224 2.3% 26.8% 73.2% 2.7 

Transit & WB 181 1.9% 8.8% 91.2% 3.0 
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simple tours because of the inefficiency and inflexibility of fulfilling multiple activities 

only by transit. For multi-modal travel, it is expected that car & WB and transit & WB 

travel will have a high proportion of complex tours. Perhaps, most people carry out sub-

tours by walking or biking. However, for car & transit travel, simple tours account for a 

relatively high percentage (26.8%).  

3.3 Built environment factors, tour attributes, and socioeconomic variables 

The built environment was assessed within quarter-mile buffers of both the residential 

locations and trip destinations. We calculated built-environment variables in five 

dimensions (“5Ds”) using Geographic Information System tools (Chen et al., 2022). 

Household density represents the density dimension. The indicators of diversity include 

land-use entropy and job-population balance. Design measures consist of intersection 

density and block size. The indicators of distance to transit include the proximity to the 

closest transit stop and stop density. The measure of destination accessibility is based on 

the count of jobs that can be reached within a 45-minute driving time during peak 

periods. 

The explanatory variables used for controlling purposes consist of tour characteristics 

and socioeconomic factors. Tour attributes include the tour distance, main purpose of a 

tour, duration of main activity, tour departure time, departure time during peak hours, and 

tour complexity. The main purpose could be categorized into three regarding the 

flexibility of scheduling and location (Stopher et al., 1996). They are mandatory, flexible, 

and optional activities. We captured tour complexity from two aspects: trip frequency and 

trip distribution type. The latter includes four categories. Travel with activities around 

home (within walking distance) was coded as MPAH. Single-purpose travel with a single 

destination far from home was coded as SPSD. Travel with multiple purposes clustered at 

a single destination far from home was coded as MPSD. Lastly, travel with multiple 

purposes widely distributed at multiple destinations was MPMD.  Socioeconomic 

variables include individual- and household-level variables. At the household level, 

household workers, motor vehicle, and bike availability are included, while individual-

level variables include age, gender, and driver's license ownership.   

The summary statistics for the explanatory variables are presented in   

 

Table 3. After extracting the data, we perform a variance inflation factor (VIF) 

analysis to evaluate potential multicollinearity between the independent variables. The 

VIF value of each variable is well below 5, and the tolerance statistics are well above 0.2, 

indicating that there is little concern for multicollinearity within our data.  

 
Table 3. Summary statistics for the explanatory variables 

 

Variables Description Average Std dev 5th percentile 95th percentile 

                                                      Tour attributes 

NUM_STOP Number of stops in a tour 1.9 1.43 1 5 

TOURDIST Total tour distance (in miles) 10.67 10.74 0.59 32.01 

PEAKHR Denote if traveler departs in 

the peak hours 

(morning/afternoon) 

Yes: 63.5% 

No: 36.5% 

MAIN_DUR Activity duration of the main 

activity (in mins) 

210 219 3 590 

TYPE Trip distribution type, coded 

as three dummy variables in 

modeling: MPSD, MPMD 

and MPAH 

MPSD: 5.6% 

MPMD: 33.7% 

MPAH: 9.2% 

SPSD: 51.5% 
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Variables Description Average Std dev 5th percentile 95th percentile 

MAIN_PUR Main purpose of a tour, 

including mandatory, 

optional, and flexible. It is 

coded as two dummy 

variables: MANDATORY 

and OPTIONAL 

MANDATORY: 45.6% 

OPTIONAL: 21.6% 

FLEXIBLE: 32.8% 

IF_ESCORT Denote if the tour involves an 

escort trip 

Yes: 18.1% 

No: 81.8% 

                                     Socioeconomic variables 

AGE Traveler’s age 50.81 14.59 25 74 

LIC Denote if the traveler owns a 

driver's license 

Yes: 95.6% 

No: 4.4% 

GEND Donate if the travel is male Male: 44.6% 

Female: 55.4% 

HHSIZ Number of family members 

in the household 

2.79 1.31 1 5 

HHVEH Number of cars in the 

household 

2.06 1.08 1 4 

BIKES Number of bikes in the 

household 

1.60 1.86 0 5 

INCOME Family income 

1=$0 - $34,999; 

2=$35,000 - $99,999; 

3=$100,000 or more 

2.17 0.66 1 3 

HHLIC Amount of family members 

with driver licenses in the 

household 

2 0.76 1 3 

HHWRK Number of employees in the 

household 

1.62 0.86 0 3 

                                   Built environment variables 

STOPDEN_O Density of transit stops at the 

origin (per square mile) 

17.86 21.40 0 56.05 

NEARSTOP_O Proximity to the closest 

transit stop at the origin (in 

mile) 

0.9 2.59 0.03 4.04 

INSDEN_O Density of intersections at the 

origin (per square mile) 

112 57 10 214 

HOUDEN_O Number of households per 

square mile at origin 

2412 2401 82 5213 

BLOCKSIZE_O Average block sized within 

1/4-mile radius of origin (in 

mi2) 

0.08 0.37 0 0.33 

ENTROPY_O Entropy for land-use types at 

the origin 

0.13 0.14 0 0.39 

ACCJOB_O Job accessibility at origin. It 

is the count of jobs that can 

be accessed within a 45-

minute travel time during 

peak periods. 

869259 156261 562696 977567 
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4 Method 

In this chapter, we detail our use of ML models and model-agnostic interpretation 

methods to understand the threshold impacts of built-environment and tour-related 

attributes in tour-based mode choice. Figure 2 is a workflow diagram demonstrating the 

process of model training, validation, and interpretation. 

Variables Description Average Std dev 5th percentile 95th percentile 

JPRATIO_O Job-population balance at 

origin. The closer to zero 

the index is, the more 

balanced the area is. A 

higher index indicates a 

higher job proportion. 

-0.77 0.54 -1.56 0.15 

STOPDEN_D Density of transit stops at 

the destination (per square 

mile) 

36.46 37.35 0 112.1 

NEARSTOP_

D 

Proximity to the closest 

transit stop at the 

destination (in mile) 

0.48 1.98 0.01 1.31 

INSDEN_D Density of intersections at 

the destination (per square 

mile) 

118 84 10 290 

HOUDEN_D Number of households per 

square mile at destination 

2796 3402 24 10914 

BLOCKSIZE_

D 

Average block sized within 

1/4-mile radius of 

destination 

0.05 0.19 0 0.17 

ENTROPY_D Entropy for land-use types 

at the destination 

0.23 0.14 0 0.48 

ACCJOB_D Job accessibility at 

destination. It is the count 

of jobs that can be accessed 

within a 45-minute travel 

time during peak periods. 

895639 164642 584905 988764 

JPRATIO_D Job-population balance at 

destination. The closer to 

zero the index is, the more 

balanced the area is. A 

higher index indicates a 

higher job proportion. 

0.14 0.97 -1.11 1.81 
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Figure 2. Workflow diagram 

 

4.1 Machine learning model for predicting travel mode 

This study employed RF to unravel the intricate relationship between the built 

environment and mode choice. RF is a commonly utilized and widely acknowledged tree-

based method. One of the major advantages is its highly accurate prediction, even for 

skewed distributions, large proportion of missing data, and irrelevant variables (Breiman, 

2001). Moreover, RF can accommodate the non-linear relationship between the variables 

with much concern for overfitting. Some studies found that RF models outperform other 

machine learning models in predicting mode choice (Hagenauer & Helbich, 2017; Zhao 

et al., 2020).  
Tuning hyperparameters in RF helps to increase the predictive capabilities of the 

models. We used a 10-fold cross-validated grid search with a repetition of three to tune 

the following set of hyperparameters:  
• Total count of trees 

• Maximum count of attributes to be evaluated for dividing a node 

• Maximum count of layers in each decision tree 
• Minimum count of data points required for a node to be divided 

 In machine learning, the classification performance of a model is affected by dataset 

imbalances (Thabtah et al., 2020). To address the imbalanced mode shares in our dataset, 
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we applied data resampling inside the cross-validation procedure. Three traditional 

resampling methods were compared: (1) classic oversampling, which oversamples the 

minority class; (2) under-sampling, which under-samples the majority class; and (3) the 

synthetic minority oversampling technique (SMOTE), a method of oversampling 

generating synthetic samples for the minority class. A standardized collection of 

hyperparameter combinations is considered for each RF model applied with different 

resampling methods. 

Regarding performance metrics in model comparison, we applied the F1 score as it is 

more reliable than other metrics (i.e., recall and precision) when we have an uneven class 

distribution. F1 score was calculated at two levels. One was with mode-specific metrics, 

which measure the fraction of accurate predictions for a specific mode. The other was 

with average metrics, which can be calculated in two ways: macro and weighted 

averages. The former takes the average over mode-specific metrics, thus treating all mode 

classes equally, while the latter combines the contributions of all classes to compute the 

average metric. Because we valued the minority class, we focused on the macro-averaged 

F1 score. Based on these metrics, we obtained the best model for result interpretation. 

4.2 Model-agnostic interpretation methods 

This study used SHAP method to conduct the global model interpretation. SHAP is an 

approach that combines the conventional Shapley values from coalitional game theory to 

provide explanations for individual predictions (Lundberg & Lee, 2017). As the only 

consistent and locally accurate method, SHAP values are theoretically optimal for tree 

ensemble feature attribution but challenging to compute (Lundberg et al., 2019). Thus, 

we adopted a tree SHAP algorithm introduced by Lundberg et al. (2019), which 

calculates the SHAP values of tree-based models at a high speed. Features with high 

absolute SHAP values indicate that they have large contribution in estimating the 

dependent variable. The SHAP feature importance is computed by taking the mean of the 

absolute Shapley values ∅𝑖  for per feature 𝑖, shown in Equation 1: 

1

𝑛
𝐼𝑖 = ∑ |∅𝑖

(𝑗)|𝑛
𝑗=1 .       (1) 

Compared to the traditional variable importance approaches using simple global 

approximations, this method provides a richer and more accurate picture of the model’s 

global pattern. It utilizes numerous high-quality local explanations to reflect the overall 

structure of the global model, all while maintaining a faithful representation of the 

original model at the local level. (Lundberg et al., 2020). 

Finally, we used accumulated local effects (ALE) plots to visualize the impact of 

features on the prediction of the outcome. Generally, partial dependence plots (PDPs) are 

used to demonstrate the marginal effect of features. However, PDPs cannot be trusted if 

the features are correlated (Molnar, 2021). The issue is resolved by ALE plots through 

the computation of prediction differences instead of means, thus enabling the capture of 

the pure impact of features. 

 

5 Results and discussions 

5.1 Predictive performance 

After the hyper-parameter tuning and resampling process, we obtained four best-

performing RF models with different resampling methods (Table 4). Concerning mode-
specific metrics, the F1 score values of all the models exhibit consistent patterns. That is, 

the most accurate predictions are observed for car travel, followed by WB and transit 
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travel. Compared to the majority class (exclusively using cars), the models show poor 

performance in predicting the minority classes. However, all the resampling methods 

significantly improve the prediction of all the minority classes. For instance, while the 

predictive accuracy of car & WB travel in the non-resampled model is 5.7%, the 

oversampling method increases this figure to 28.6%. The values for the SMOTE and 

under-sampling methods are 26.2% and 16.9%, respectively. Another vast improvement 

is observed in car & transit travel, as the predictive accuracy is increased by 18.2% with 

the SMOTE method. Regarding the average metrics, the SMOTE method has the best 

fitness to the data, with the highest macro and weighted F1 score. Therefore, we chose 

the RF model with the SMOTE method as our final model. Its optimal combination of 

hyper-parameters is listed below.  
• Total count of trees: 190 

• Maximum count of attributes to be evaluated for dividing a node: 5 

• Maximum count of layers in each decision tree: 60 

• Minimum count of data points required for a node to be divided: 10 

 
Table 4. Performance of RF models using various resampling methods 

 

Methods Car WB Transit 
Car & 

Transit 

Car & 

WB 
Transit & WB 

Macro 

F1 

Weighted 

F1 

No resampling 
0.91

8 

0.63

8 
0.569 0.154 0.057 0.500 0.473 0.824 

Under-

sampling 

0.69

9 

0.53

9 
0.460 0.274 0.169 0.431 0.429 0.642 

Classic 

oversampling 

0.91

2 

0.64

2 
0.624 0.312 0.286 0.554 0.555 0.833 

SMOTE 
0.90

9 

0.65

8 
0.629 0.336 0.262 0.575 0.561 0.833 

5.2 Variable importance 

We analyzed the results with SHAP values to find the features with high contributions 

to travel mode prediction. Table 5 displays the overall relative importance of the 

variables as well as the collective relative importance by category. Mode choice decision 

is mainly influenced by tour-related attributes. with many individual variables (i.e., tour 

distance, trip frequency, and traveling around home) ranked at the top. Vehicle ownership 

is the most influential variable among demographic attributes, followed by driver's 

license ownership. Moreover, Our findings indicate that built-environment variables 

measured at destination have higher ranks than those measured at origin, which indicates 

that the built environment at destination exerts a greater influence on mode choice 

compared to those at origin, consistent with the literature (Zhang, 2004). Among the 

individual built-environment variables, connectivity-related ones, i.e., block size and 

intersection density are ranked higher than others. Regarding local diversity, land-use 

mix at both origin and destination has trivial impacts on mode choice. By contrast, job-

population balance has a stronger influence than land-use mix, consistent with results of 

the meta-analysis by Ewing and Cervero (2010). 

5.2.1 Non-linear relationship between variables and travel modes 

Variable importance provides a first indication of the relationship between a variable 

and mode choice. To further visualize the exact form of the relationship, we used ALE 

plots (Figure 3-Figure 8). Note that, for easier comparison, we standardized the y-axis 

scale for the same variables across different modes. 
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Table 5. Overall relative importance of variables 

 

Variables Relative importance Rank Sum by variable category 

Tour attributes 

TOURDIST 11.7% 1 

43.9% 

NUM_STOP 7.2% 2 

MPAH 6.9% 3 

MAIN_DUR 5.1% 6 

MPMD 4.8% 8 

DEP_TIME 3.2% 11 

MPSD 2.3% 15 

MANDTORY 1.4% 
 

IF_ESCORT 0.9% 
 

OPTIONAL 0.2%  

PEAKHR 0.1% 
 

Socioeconomic variables 

HHVEH 6.6% 4 

15.6% 

LIC 2.5% 14 

BIKES 2.0%  

AGE 1.5%  

HHLIC 1.1%  

INCOME 0.7%  

HHSIZ 0.5%  

GEND 0.4%  

HHWRK 0.4%  

Built environment variables at origin 

BLOCKSIZE_O 3.1% 12 

14.0% 

INSDEN_O 2.2%  

HOUDEN_O 2.1%  

ACCJOB_O 1.8%  

NEARSTOP_O 1.5%  

JPRATIO_O 1.2%  

ENTROPY_O 1.1%  

STOPDEN_O 1.1%  

Built environment variables at destination 

BLOCKSIZE_D 6.3% 5 

26.5% 

INSDEN_D 5.0% 7 

STOPDEN_D 4.6% 9 

ACCJOB_D 3.2% 10 

JPRATIO_D 2.9% 13 

HOUDEN_D 2.3%  

NEARSTOP_D 1.3%  

ENTROPY_D 0.9%  
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5.2.2 Tour-related variables 

As discussed in the variable importance section, several tour-related variables have 

high rankings overall. This section focuses on these most important tour-related 

variables, including tour distance, trip distribution type, and trip frequency.  

Figure 3 shows that tour distance exhibits a positive relationship with car or transit 

mode combinations, while it demonstrates a negative relationship with WB travel., which 

indicates that a longer tour distance tends to encourage travelers to use a car or ride 

transit. The impacts of tour distance are much stronger on car and WB travel than on the 

other alternatives, which is consistent with the literature (Liu et. al., 2022). However, 

these associations become insignificant when the tour distance exceeds 2 miles (the curve 

becomes flat) except for the transit alternative: the association between tour distance and 

riding transit remains positive.  

 

Figure 3. Non-linear associations between tour distance and mode choice 

Figure 4 presents that people are likely to use car travel for simple tours or tours with 

dispersive activities, while people tend to walk/bike if they travel in relatively proximity 

to home, consistent with previous studies (Harding et al., 2015; Ho & Mulley, 2013). 

Besides, it is interesting to find that people tend to walk/bike if they make MPSD tours 

than simple tours even though simple tours tend to have a shorter distance. Transit travel 

is related to simple tours while car & transit is related to MPMD tours, which is 

consistent with the descriptive findings discussed above. Moreover, it is reasonable that 

car & WB and transit & WB travel are highly related to MPSD tours. That is, Individuals 

may travel by car or public transportation to reach their destination, and then engage in 

multiple activities within walking distance. 
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Figure 4. Non-linear associations between tour complexity and mode choice 

Concerning trip frequency, we do not focus on WB and car & transit travel, as the 

associative variables have low importance rankings and show unclear patterns with large 

confidence intervals. For the remaining four mode combinations, there are two major 

findings from Figure 5. Previous studies suggest that when the trip frequency pf a tour 

increases, people tend to use car over transit (Cirillo & Toint, 2001; Huang et al., 2021; 

Vande Walle & Steenberghen, 2006). However, this study shows that this observation is 

not necessarily true. While a tour’s trip frequency is negative associated with car and 

transit, its associations with car & WB and transit & WB are positive. Considering 

together with our findings about MPSD tours, we interpret this finding as suggesting that, 

when they travel to a dense area by car or transit, people often take advantage of high 

walking/biking accessibility by combining more trips in a tour.  
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Figure 5. Non-linear associations between trip frequency and mode choice 

Finally, it is worth noting that tour-related attributes are not capable of distinguishing 

the choice between car and transit, which is consistent with the findings of Kim (2021). 

Probably, given the high quality of transit service in the Portland Metropolitan Area, 

transit is competitive with cars. In such circumstances, the built environment can 

significantly contribute to encouraging the use of transit over driving alternatives.  

5.2.3 Built environment variables 

In this section, we only presented and discussed the ALE plots of the built 

environment variables with larger relative importance (namely, the top three variables). 

They are block size at destination, intersection density at destination, and transit stop 

density at destination. 

Figure 6 presents the relationships between block size at destinations and mode 

choice. Generally, when its value ranges from 0 to 0.018 mi2, a larger block size at 

destination is positively related to car travel, while an opposite relationship is observed 

for the other alternatives. These findings are intuitive because short block size is an 

essential feature related to transit/walking friendless by offering direct travel and various 

route options (Anabtawi & Scoppa, 2022; Lu et al., 2018, Reilly & Landis, 2002; Saelens 

et al., 2003). Notably, block size has stronger impacts on WB than other alternatives, 

indicating that increasing block size will efficiently promote active travel modes. 
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Figure 6. Non-linear associations between block size at destination and mode choice 

  

The overall relationship between intersection density at destination is generally 

negative with car travel, while its relationships with the remaining alternatives are 

positive (Figure 7), which is consistent with prior studies (Daisy et al., 2020; Ewing & 

Cervero, 2010; Lu et al., 2018). However, when intersection density is within 45 /mi2, we 

observed a positive relationship between this variable and car use. This is because the 

benefits of enhanced network connectivity also depend on the scale: when considering a 

smaller scale, increased connectivity primarily benefits pedestrians; at a larger scale, they 

benefit auto-users (Reilly & Landis, 2002). These findings suggest that intersection 

density should reach at least 45 /mi2 to have the desired effects in discouraging exclusive 

car use in a tour. Like block size at destination, increasing intersection density will 

effectively promote the use of active travel modes. 
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Figure 7. Non-linear associations between intersection density at destination and mode choice 

 

Moreover, transit stop density at destination is negatively related to car travel (Figure 

8), which is reasonable, as some drivers tend to switch to using transit when there is a 

quality transit service (Azimi et al., 2021; Elldér, 2020). The most effective range to 

discourage car travel over other transit-involved alternatives is 40 to 65 stops/mi2. 

Surprisingly, stop density at destination shows relatively high importance on car & WB 

travel, with a positive influence. One possible explanation is that high stop density often 

goes together with increased connectivity. 

 

Figure 8. Non-linear associations between transit stop density at destination and mode choice 
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6 Conclusion and discussion 

Using the 2011 Oregon Travel and Activity Survey, the study applied a random forest 

approach to examine the non-linear effects of the built environment and tour-related 

attributes on tour-based mode choice decisions, while accounting for sociodemographic 

variables. We employed the SMOTE method to tackle the data imbalance issue and 

enhance the accuracy of travel mode choice prediction. We used machine learning 

interpretation approaches, including variable importance and accumulated local effects, 

to interpret the model results. 

6.1 Contributions to the literature 

This study makes two important contributions to current literature. First, adopting ML 

methods (i.e., RF) advances the tour-base analysis by identifying the non-linear impacts 

of tour-related attributes and built environment factors on mode choice. With the 

strongest influence on mode choice, tour distance is positively associated with exclusive 

car travel when its value is below 2 miles. However, its association with transit use is 

positive even after its value exceeds 2 miles, which demonstrates that transit is a 

competitive travel mode in the study region for longer distance travel (i.e., trips over 2 

miles). Besides, built-environment variables at both the trip origin and destination have 

non-linear effects on tour-based mode choice. While the prior studies using the traditional 

statistical models found the positive relationship between intersection density and non-

auto use, our study enriches the literature by identifying the threshold effects of 

intersection density. To achieve the desired effects to promote non-auto use, intersection 

density should reach at least 45/mi2; otherwise, the effect is opposite.  
In addition, the study generates a clear picture of how the built environment and tour-

related attributes affects individual’s decision to combine various travel modes in a tour. 

Under a tour-based analytical framework, previous studies have generally assessed the 

main mode of a tour by grouping exclusive car travel and car & WB into a single car 

alternative; in other words, they assumed that car and car & WB have similar travel 

patterns. However, our finding indicates that, in many cases, the association between the 

two alternatives and some built environment variables can have opposite signs. For 

example, a compact urban form is negatively associated with exclusive car travel but has 

a positive relationship with car & WB travel. Thus, the two modes should be treated 

differently. Even though both car and car & WB modes involve auto use, the latter is 

preferable as travelers achieve their daily travel objectives with fewer vehicle miles 

traveled (VMT) and more active travel. Additionally, some previous studies have found a 

negative association between trip frequency of a tour and transit use, implying that 

having more trips in a tour can be a barrier to riding transit (Cirillo & Toint, 2001; Huang 

et al., 2021; Vande Walle & Steenberghen, 2006). Distinguishing between exclusive 

transit travel and transit & WB travel, our study provides evidence to challenge this 

conclusion: findings on transit &WB suggest that many transit users engage in multiple 

activities within walking distance at some transit-rich destinations. 

6.1.1 Policy implications   

Our study results have three important policy implications for transportation and land-

use planning. First, the model results show that built-environment variables at 

destinations have higher variable importance than those at origins in estimating travel 

modes. This implies that policymakers aiming for promoting green travel with land-use 

strategies are likely to see great policy impact from non-residential areas, like downtowns 
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and employment centers. Notably, block size at destination has the highest variable 

importance ranking among all built-environment variables, and policymakers should give 

more attention to this variable.  
Second, this study provides the threshold effects of land-use variables on mode 

choice. The most effective value range for block size influencing car use in a tour is from 

0 to 0.018 mi2. Besides, we found that intersection density is negatively related with car 

use only when its value exceeds 45 ins/mi2; when its value is below this threshold, the 

association is negative. These findings suggest that a grid street network characterized 

with small block size and dense intersection tends to encourage greater use of active 

travel modes. In addition, transit stop density at destination has a significant impact on 

promoting transit ridership. The most effective value range for this impact is between 40 

to 65 stops per square mile. Overall, these findings imply that expanding transit service 

areas and improving street connectivity are critical for promoting sustainable travel, 

consistent with the principles of transit-oriented development (Ding et al., 2019). 
Third, the results suggest that compact development is effective in encouraging 

sustainable travel. A travel with different types of purposes completed by active modes 

near a transit station is a sustainable and efficient chained tour (Harding et al., 2015; Ho 

& Mulley, 2013). For example, people take transit to the workplace and make multiple 

trips by foot in proximity before, between, and after work (i.e., café, lunch, grocery, and 

gym).  While lower block sizes, higher intersection densities, and higher transit stop 

densities lead to combined transit and walk mode shares, proper coordination of land use 

and transit provision help promoting this type of complex tour by allowing efficient 

chained trips. 

 

7 Limitations 

This study has some limitations. First, we have considered the tour distance for each 

alternative but not their respective travel times and monetary costs. These travel attributes 

of non-chosen alternatives are difficult to infer for a tour-based approach when mode 

change is considered, which warrants further research. Second, it is important to 

acknowledge that the matter of residential self-selection has not been adequately 

addressed in this context. Future studies that account for people’s attitudes and lifestyles 

or use longitudinal datasets could mitigate the self-selection bias. Third, the threshold 

impacts of built environment factors might be context specific. This study is based on the 

area of Portland Metropolitan located in Oregon, with a supportive environment for 

walking, biking, and public transportation. Therefore, more studies based on different 

geographical areas are needed to enhance the transferability and generalizability of the 

study findings.  
Lastly, this study has essentially assumed the tour attributes to be exogenous variables 

in the mode choice model, which is somewhat problematic as mode choice also shapes 

tour characteristics. This simultaneity problem is expected to have a larger impact on the 

magnitude of variable effects than their relative importance. Additionally, some studies 

have found that the prevailing causal pattern within the population is one where the 

complexity of the trip chaining pattern influences mode choice (Krygsman et al., 2006; 

Ye, 2007). Therefore, we consider the results of variable importance to be more robust 

than the estimated nonlinear effects. That said, we believe that the bias caused by 

simultaneity is quantitative, not qualitative; in other words, we believe that even though 

the true nonlinear patterns can differ from what was estimated from our model, nonlinear 

effects do exist.  
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