
       http://jtlu.org
. 7 . 1 [2014] pp. 43–55 doi: 10.5198/jtlu.v7i1.360

Generating French virtual commuting networks at the municipality level

Maxime Lenormand

IRSTEA a

Sylvie Huet

IRSTEA

Floriana Gargiulo

University of Namur

Abstract: Weaim to generate virtual commuting networks in the rural regions of France in order to study the dynamics of theirmunicipalities.
Since it will be necessary to model small commuting flows between municipalities with a few hundred or thousand inhabitants, we have opted
for the stochastic model presented by Gargiulo et al. (2012). is model reproduces various possible complete networks using an iterative
process, stochastically selecting a workplace in the region for each commuter living in the municipality of a region. e choice is made con-
sidering the job offers in each municipality of the region and the distance to all of the possible destinations. is paper will present methods
for adapting and implementing this model to generate commuting networks between municipalities for regions in France. We address three
different issues: How can we generate a reliable virtual commuting network for a region that is highly dependent on other regions for the
satisfaction of its residents’ demands for employment? What about a convenient deterrence function? How can we calibrate the model when
detailed data is not available? Our solution proposes an extended job search geographical base for commuters living in the municipalities; we
compare two different deterrence functions and we show that the parameter is a constant for network linking municipalities in France.

1 Introduction

e connection between the home andworkplace plays a cen-
tral role in understanding the socio-economic relations in a
network of rural municipalities (Clark et al. 2003; Reggiani
and Rietveld 2010). Indeed, new economic theories assume
local positive dynamics can be explained by implicit geograph-
ical money transfers made by commuters or retired people
(see for example Davezies (2009)). Simulation is becom-
ing an increasingly convenient tool to study populations and
their interactions over space. at is particularly the case with
individual-based approaches, which allow for the study of the-
ories at the individual level since they simulate the variations
in how individuals interact with each other and with their en-
vironment. Recent modeling reviews show the increasing use
of such a tool (Birkin andWu2012; Bousquet and Page 2004;
Parker et al. 2003; Rindfuss et al. 2004; Verburg et al. 2004;
Waddell et al. 2003). However, these approaches require gen-
erationmodels capable of building reliable virtual commuting
networks that consider each individual within a population.
at is the case in the SimVillages dynamic micro-simulation
model we developed during the PRIMA¹ project. Indeed, in
the SimVillagesmodel, aer generating a synthetic population
of individuals (Gargiulo et al. 2010), it is necessary to choose a

 maximlenormand@gmail.com
¹ PRototypical policy Impacts on Multifunctional Activities in rural

municipalities - EU 7th Framework Research Programme; 2008-2011;
https://prima.cemagref.fr/the-project

place of work for each worker within this population because
a commuting origin-destination table was unavailable.

e goal of the European PRIMA project was to under-
stand the dynamics of rural municipalities in France. Ninety-
five percent of them have fewer than 3000 inhabitants. is
means that most of the commuting flows we want to study
are weak, with a spatial distribution very difficult to predict
with the available variables at an aggregated level. is is why
we opt for the stochasticmodel recently proposed byGargiulo
et al. (2012). Moreover, we want to consider the commuting
network on different dates. Detailed data regarding flows be-
tween pairs of municipalities are only available in France for
the year 1999. For other years, the only reliable data is aggre-
gated data for each municipality, which describes how many
people work outside of the municipality and how many come
from outside of the municipality to work. Such data lacks
precision regarding the various places of work and the various
municipalities where citizens reside. en we also choose the
Gargiulo et al. (2012) model for its ability to generate a pop-
ulation of individuals on a commuting network, starting from
this data. is model reproduces the complete network us-
ing an iterative process that stochastically selects a workplace
in the region for each commuter living in the municipality of
the region. e choice is made while considering the job of-
fers in each municipality of the region and the distance to all
possible destinations. It differs from the classical generation
models presented inOrtúzar andWillumsen (2011) since it is
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adiscrete choicemodelwhere the individual decision function
is inspired by the gravity law model, which is not usually em-
ployed on an individual level (Barthélemy 2011; Haynes and
Fotheringham 1984; Ortúzar and Willumsen 2011). More-
over, such a model ensures that for every municipality the vir-
tual total numbers of commuters both coming in and going
out are the same as the ones supplied by the data.

is paper presents a method to adapt and implement this
model to generate commuting networks between municipali-
ties for regions in France. is implementation has forced us
to address three different issues: How can we generate a re-
liable virtual commuting network for a region highly depen-
dent onother regions to satisfy the need for jobs for the people
living in the municipalities? What about a convenient deter-
rence function? How should the model be calibrated when
detailed data is not available?

e first problem to solve involves the fact that regions in
France are not islands, as presented in the example ofDeMon-
tis et al. (2007, 2010). Indeed, some of the inhabitants, espe-
cially those living close to the borders of the region, are likely
to work in municipalities located outside the region of resi-
dence. is part of the population, especially if it is signifi-
cant, causes the generated network to register false if we only
consider that people living in the region also work in the re-
gion. A method for solving this problem involves generating
the commuting network only for people living and working
in the region. However, in order to do this the modeler must
know the quantity and the place of residence for individuals
who work outside but live within the region. Data providing
this information is very rare. erefore, we address this issue
by extending the job search geographical base for commuters
living in the municipalities to a sufficiently large number of
municipalities located outside the region of residence. en,
we compare the model that does not include outside munici-
palities to themodel including outsidemunicipalities in 23 re-
gions in France and come to a conclusion regarding the quality
of our solution.

e second problem relates to the form of the deterrence
function, which governs the impact of distance on the choice
of the place of work relative to the quantity of job offers. e
initial work done byGargiulo et al. (2012) proposes the use of
a power law. However, Barthélemy (2011) states that the form
of the deterrence function varies greatly and can sometimes be
inspired by an exponential function, such as in Balcan et al.
(2009), or by a power law function as in Viboud et al. (2006).
To choose themuchmore convenient deterrence function, we
have compared the quality of generated networks for 34 re-
gions in France obtained with both the exponential law and

the power law. Better results were obtained with the expo-
nential law.

e final problem was related to calibration. e gener-
ation model, as with most of the currently used commuting
network generation models, has one parameter to calibrate.
is parameter governs the impact of distance on the individ-
ual decision regarding the place of work relative to the quan-
tity of job offers. is parameter was calibrated through min-
imization of the Kolmokorov-Smirnov distance between the
observed and simulated commuting distance distribution for
individuals of the studied region. When detailed data is not
available, it is necessary to find a way to determine this param-
eter. e only available distance that can be used is the Eu-
clidian distance. While detailed commuting network datawas
available for the year 1999 and could be used for calibration,
it was not available for earlier or more recent years. ough it
maybepossible to assume theparameter valuedoes not change
over time, a transportation network can evolve greatly at the
local level to reduce the time distance. Such a change cannot
be recordedwhenusing theEuclidiandistance. A solutionwas
finally found. Using 34 regions in France, we show that every
region can be generated using a constant value for the parame-
ter. en, we assume that the parameter value is constant over
time and space.

2 Material andmethods

2.1 The French case studies and data from the French
statistical office

Acomplete descriptionof the regions fromwhich thenetwork
was generated is provided in Table 4. ese regions have been
randomly chosen for their diversity in terms of number ofmu-
nicipalities, number of commuters and surface areas. Some
correspond to an administrative region of France while oth-
ers are closer to the county (known as “departments,” a French
administrative unit). ese two types of case studies are called
“region” hereaer.

e French Statistical Office (INSEE) collects information
regarding each individual’s residence andplace ofwork.² From
this collected data, the Maurice Halbwachs Center or INSEE
makes the following data available for every researcher:

1. In 1999, the observed commuting networks, i.e., data re-
garding the numbers of individuals commuting from lo-

² INSEE (InstitutNational de la Statistique et des Etudes Economiques,
Recensement de la population française : tableaux ”mobilités” - France
entière - 1999, CMH | lil-0257, http://www.reseau-quetelet.cnrs.fr/spip/
rubrique.php3?id_rubrique=74&lang=en

http://www.reseau-quetelet.cnrs.fr/spip/rubrique.php3?id_rubrique=74&lang=en
http://www.reseau-quetelet.cnrs.fr/spip/rubrique.php3?id_rubrique=74&lang=en
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cation i to location j for every municipality of a region
(called “observed data” hereaer);

2. In 1999, the total number of commuters, the total job
offers, and the total number of workers in residence for
every municipality. ese data allow computations to be
made for the number of workers that commute to their
place of employment for each municipality.

3. e Lambert coordinates for each municipality are easy
to find on the Internet. ey are used to compute the
Euclidian distance between each pair of municipalities.

We used the data sets 2 and 3 as inputs of the algorithms
described in this paper to simulate commuting networks (S).
We compare these simulated commuting networks to “real”
network (R) built from the observed data of the data set 1.

2.2 The Gargiulo et al. (2012) model

Consider a region composed of n municipalities. We can
model the observed commuting network starting from ma-
trix R ∈Mn×n(N), where Ri j represents the number of com-
muters from municipality i (in the region) to municipality j
(in the region). is matrix represents the light gray origin-
destination table presented in Table 1.

e inputs of the algorithm are:

• D = (di j )1≤i , j≤n the Euclidean distance matrix be-
tween municipalities.

• I j , the number of in-commuters from the region to mu-
nicipality j of the region, 1≤ j ≤ n (i.e., the number of
individuals living in the region in municipality i (i ̸= j )
and working in municipality j ).

• Oi , the number of out-commuters from municipality i
of the region to the region, 1 ≤ i ≤ n (i.e., the number
of individuals working in the region in municipality j
( j ̸= i) and living in municipality i).

Ik and Ok can be respectively assimilated to the job offers
for those employed in the region and the job demand of those
employed in the region for municipality k , 1 ≤ k ≤ n. e
algorithm starts with:

I j =
n∑

i=1

Ri j (1)

and

Oi =
n∑

j=1

Ri j (2)

e purpose of the model is to generate the light gray
origin-destination sub-table of the regiondescribed inTable 1.
To do this it generates matrix S ∈Mn×n(N) where Si j repre-
sents thenumber of commuters frommunicipality i (in the re-
gion) to municipality j (in the region). It’s important to note
that Si j = 0 if i = j . e algorithm assigns to each individual
a place of work with a probability based on the distance from
the place of residence to every possible place of work and their
corresponding job offer. e number of in-commuters for
municipality j and the number of out-commuters formunici-
pality i decrease each time an individual living in i is assigned
municipality j as a workplace. e algorithm is stoppedwhen
all out-commuters have a place of work. e algorithm is de-
scribed in Algorithm 2.1 with m = n.

Algorithm 2.1Commuting generation model

Input : D ∈Mn×m(R), I ∈Nm , O ∈Nn ,β ∈R+
Output : S ∈Mn×m(N)

Si j ← 0
while
∑n

i=1 Oi > 0 do
Simulate i ∼UA where A= {k|k ∈ |[1, n]|, Ok ̸= 0}
Simulate j from |[1, m]| with a probability:

Pi→ j =
I j f (di j ,β)∑m

k=1 Ik f (di k ,β)

Si j ← Si j + 1
I j ← I j − 1
Oi ←Oi − 1

end while
return S

Gargiulo et al. (2012) uses deterrence function f (di j ,β)
with a power law shape:

f (di j ,β) = d−βi j 1≤ i , j ≤ n . (3)

3 Statistical tools

is section presents the tools used to calibrate themodel and
to compare various implementation choices.

3.1 Calibration of theβ value

e samemethod used in Gargiulo et al. (2012) is used to cal-
ibrate theβ value. eβ value is calibrated so as tominimize
the average Kolmogorov-Smirnov distance between the simu-
lated commuting distance distribution and one building from
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Table 1: Origin-destination table for the region; e light gray table represents the commuters living (place of residence RP) and
working (place of work WP) in the region for each municipality of the region; e dark gray line represents the number
of out-commuters from municipality of the region to the region for each municipality of the region (i.e., the row totals of
the light gray table); e dark gray column represents the number of in-commuters from the region to a municipality of
the region for each municipality of the region (i.e., the column totals of the light gray table).

RPWP M1M1M1 ......... M jM jM j ......... MnMnMn Total
M1M1M1 0 ... R1 j ... R1n O1
......... ... ... ... ... ... ...

MiMiMi Ri1 ... Ri j ... Ri n Oi
......... ... ... ... ... ... ...

MnMnMn Rn1 ... Rn j ... 0 On
Total I1 ... I j ... In

RPWP M1M1M1 ......... M jM jM j ......... MnMnMn Total
M1M1M1 0 ... R1 j ... R1n O1
......... ... ... ... ... ... ...

MiMiMi Ri1 ... Ri j ... Ri n Oi
......... ... ... ... ... ... ...

MnMnMn Rn1 ... Rn j ... 0 On
Total I1 ... I j ... In

the observed data. For the basic model we compute the com-
muting distance distribution with the commuting distance of
individuals who are commuting from the region to the re-
gion. For the model focused on the outside area, we compute
the commuting distance distributionwith the commuting dis-
tance of the individuals who are commuting from the region
to the region and the outside area.

As the Gargiulo et al. (2012) model is stochastic, the final
calibration value we consider is the average β value over 10
replications of the generation process.

3.2 An indicator to assess the change

It is necessary to have an indicator to compare the simulated
commuting network and the observed commuting network
(data set 1 in section 2.1). Let R ∈Mn1×n2

(N) represent the
observed commuting network when Ri j represents the num-
ber of commuters from municipality i to municipality j . Let
S ∈ Mn1×n2

(N) represent a simulated commuting network
for the same municipalities. We can calculate the number of
common commuters between R and S (Eq. 4) and the num-
ber of commuters in R (Eq. 5):

NC Cn1×n2
(S, R) =

n1∑
i=1

n2∑
j=1

min(Si j , Ri j ) (4)

NCn1×n2
(R) =

n1∑
i=1

n2∑
j=1

Ri j (5)

From Eq. 4 and Eq. 5 we calculate the Sørensen similarity
index (Sørensen 1948). is index is suitable because it corre-
sponds to the common part of commuters between R and S .

us it is called the common part of commuters (CPC) (Eq.
6):

C PCn1×n2
(S, R) =

2NC Cn1×n2
(S, R)

NCn1×n2
(R)+NCn1×n2

(S)
(6)

is index has been chosen for its intuitive explanatory
power, as it is a similarity coefficient that provides the like-
ness degree between two networks. e index ranges from a
value of zero, for which there are not any commuter flows in
common in the two networks, to a value of one, when all com-
muter flows are identical between the two networks.

4 Generating commuting networks for French

regions at the municipality level

4.1 How to cope with regions that are not islands or those
that lack detailed data?

A commuting network is defined by an origin-destination ta-
ble (light gray table in Table 2). At the regional level, this
means that it is necessary to know, for each municipality of
residence and for each municipality of employment, the value
for the flow of commuters traveling from one to another. is
kind of data is not always provided by statistical offices and the
datasets are usually aggregated: only the total number of out-
commuters and in-commuters for each municipality is avail-
able for each (dark gray row and column in Table 2). To apply
the model and define the commuting network, unless we are



Generating French virtual commuting networks (in press) 

in a significantly isolated region³, we need to find a way to iso-
late from the total number of in(out)-commuters (dark gray
row and column in Table 2) the fraction that relates strictly to
the region (light gray table in Table 2). However, this is not a
simple task.

Furthermore, even if these parts can be isolated, a problem
remains due to the border effect. Indeed, if we consider only
the region, there is the risk of making an error in the recon-
struction of the network for municipalities near the region’s
border. ehigher the proportion of individuals working out-
side of the region, the more significant the error will be.

To go further, we propose to change the inputs for the algo-
rithm. Instead of only considering the regional municipalities
as possible places of work, we also consider an area outside of
the region. e outside area represents the surroundings of
the studied area. e following section describes amethod for
considering this outside area practically.

4.1.1 A new extended to outside job search base

We implement the model to generate 23 various regions in
France. eir outside area is composed of the set of munici-
palities of their neighboring ”departments.”

We consider the outside of the region to be composed of
m− n municipalities, where n represents the number of mu-
nicipalities in the region. e inputs are the directly available
aggregated data at the municipal level:

• D = (di j ) 1≤i≤n
1≤ j≤m

, the Euclidean distance matrix between

municipalities both in the same region and in the outside
area.

• (I j )1≤ j≤m , the total number of in-commuters of munic-
ipality j of the region and outside of it (i.e., the number
of individuals working inmunicipality j of the region or
the outside area and living in another municipality).

• (Oi )1≤i≤n , the total number of out-commuters of mu-
nicipality i of the region only (i.e., the number of indi-
viduals living inmunicipality i of the region andworking
in another municipality).

e purpose of the algorithm that introduces the outside
is to generate the origin-destination table (light gray and gray
sub-table in Table 2). To do this, the algorithm presented in
Algorithm 2.1 is used to simulate Table 3. From this, through
difference Table 2 can be obtained with the total number of

³ An island, for example. In this case, the gray rows and columns inTable
2 would not exist.

in-commuters (I j )1≤ j≤n , the total number of out-commuters
(Oi )1≤i≤n , and the light gray table of Table 3.

A matricial representation of the origin-destination table
presented in the light gray and gray sub-table in Table 2,
known as the simulated matrix S ∈ M(n+1)×(n+1)(N), is ob-
tained. Si j represents:

• the number of commuters from municipality i (in the
region) to municipality j (in the region) if i , j ̸= n+1;

• the number of commuters from the outside area to mu-
nicipality j (in the region) if i = n+ 1 and j ̸= n+ 1;

• the number of commuters from municipality i to the
outside area if i ̸= n+ 1 and j = n+ 1.

4.1.2 Comparison of the two models: Assessing the impact
of the outside

Weassess the impact of the outside area through a comparison
between the network generations for 23 French regions both
including and not including the outside area. e generation
is made on a municipality scale using a power law deterrence
function.

Both implementations are compared through their CPC
values between the simulated network S and the observed
network R (data set 1 presented in Section 2.1) for each re-
gion. We replicate the generation for each region 10 times
and our indicator on each replicate is calculated. In all the
presented figures, the indicator averages 10 replications. e
variation of the indicator over the replications is very low, av-
eraging 1.02 percent at most. Consequently, this is not rep-
resented on the figures. Fig. 1 presents the common part of
commuters C PCn×n(S, R) between the simulated network
S and the observed network R. e squares represent the
CPCbetween the observed network R and the simulated net-
works obtained with the regional job search base. e tri-
angles represent the CPC between the observed network R
and the simulated networks obtained with a job search base
comprising the region and its outside area. It’s important to
note that for the implementation without the outside area,
S ∈ Mn×n(N), while for the implementation with the out-
side area, S ∈ M(n+1)×(n+1)(N). In order to compare the
two models, the regional network (commuters from the re-
gion to the region) must be taken into consideration. Indeed,
in the without-outside-area cases, NCn×n(S) = NCn×n(R),
but this is not necessarily true for the with-outside-area cases.

Fig. 1 shows that the two job search bases give results that
are not different. us, introducing the outside area solves the
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Table 2: Origin-destination table. e light gray table represents the commuters living and working in the region for each munic-
ipality of the region. e gray column represents the out-commuters living in the region and working outside (Out.) for
eachmunicipality of the region. e gray line represents the in-commuters working in the region and living outside (Out.)
for each municipality of the region. e dark gray line (column) represents the total number of out(in)-commuters for
each municipality of the region.

RPWP M1M1M1 ......... M jM jM j ......... MnMnMn Out. Total
M1M1M1 0 ... R1 j ... R1n R1out O1
......... ... ... ... ... ... ... ...

MiMiMi Ri1 ... Ri j ... Ri n Riout Oi
......... ... ... ... ... ... ... ...

MnMnMn Rn1 ... Rn j ... 0 Rnout On
Out. Rout1 ... Rout j ... Routn
Total I1 ... I j ... In

RPWP M1M1M1 ......... M jM jM j ......... MnMnMn Out. Total
M1M1M1 0 ... R1 j ... R1n R1out O1
......... ... ... ... ... ... ... ...

MiMiMi Ri1 ... Ri j ... Ri n Riout Oi
......... ... ... ... ... ... ... ...

MnMnMn Rn1 ... Rn j ... 0 Rnout On
Out. Rout1 ... Rout j ... Routn
Total I1 ... I j ... In

Table 3: Origin-destination table from the region to the region and the outside area. e light gray table represents the commuters
living (place of residence, RP) and working (place of work, WP) in the region for each municipality of the region. e
gray table represents the commuters living (place of residence, RP) in the region and working (place of work, WP) outside
of the region.

RPWP M1M1M1 ......... M jM jM j ......... MnMnMn Mn+1Mn+1Mn+1 ......... MmMmMm
M1M1M1 0 ... R1 j ... R1n R1n+1 ... R1m
......... ... ... ... ... ... ... ... ...

MiMiMi Ri1 ... Ri j ... Ri n Ri n+1 ... Ri m
......... ... ... ... ... ... ... ... ...

MnMnMn Rn1 ... Rn j ... 0 Rnn+1 ... Rnm

RPWP M1M1M1 ......... M jM jM j ......... MnMnMn Mn+1Mn+1Mn+1 ......... MmMmMm
M1M1M1 0 ... R1 j ... R1n R1n+1 ... R1m
......... ... ... ... ... ... ... ... ...

MiMiMi Ri1 ... Ri j ... Ri n Ri n+1 ... Ri m
......... ... ... ... ... ... ... ... ...

MnMnMn Rn1 ... Rn j ... 0 Rnn+1 ... Rnm
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Figure 1: Average CPC for 23 regions. e squares represent

the basic model; the triangles represent the model
with the outside area.

problem linked to a lack of detailed data without changing the
quality of the resulted simulated network. Indeed, one must
keep in mind that the inputs for the with-outside-area cases
do not require detailed data in comparison to the without-
outside-area cases.

4.2 Choosing a shape for the deterrence function

e next problem relates to the form of the deterrence func-
tion which rules the impact of distance on the choice of the
place of work relative to the quantity of job offers. e initial
work done by Gargiulo et al. (2012) proposes to use a power
law. However, Barthélemy (2011) states the form of the de-
terrence function varies significantly and can sometimes be in-
spired by an exponential function as in Balcan et al. (2009) or
by a power law function as in Viboud et al. (2006). By choos-
ing the much more convenient deterrence function, we com-
pare the quality of generated networks for 34 French regions
obtainedwith themodel including the outside area using both
the exponential law and the power law.

A deterrence function following an exponential law is in-
troduced:

f (di j ,β) = e−βdi j 1≤ i ≤ n and 1≤ j ≤ m . (7)

To compare the two deterrence functions, we have gener-
ated the networks of 34 various French regions (see Table 4
for details) that replicate 10 times for each region. e net-
works were generated with a job search base for the algorithm
that considers the outside area.
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Figure 2: Density of the Auvergne commuting distance distri-
bution. e solid line represents the observed com-
muting distance distribution; the dotted line repre-
sents the commuting distance distribution obtained
with the calibrated model with a job search base
comprising the outside and the exponential law; the
dashed line represents the commuting distance dis-
tribution obtained with a job search base comprising
the outside and the power law. e two simulated
commuting distance distributions are computed for
one replication each.

For example, Fig. 2 shows that we obtained a better es-
timation of the Auvergne commuting distance distribution
when using the exponential law. We computed the observed
commuting distance distribution with the observed Auvergne
commuting network (data set 1 presented in Section 2.1) and
the Euclidean distances between the Auvergne municipalities
(data set 3 presented in Section 2.1).

More systematically, we plot, for the exponential law and
power law, the average of the replications for the commonpart
of commuters C PC(n+1)×(n+1)(S, R) between the simulated
network S and the observed network R in Fig. 3. is clearly
indicates that the average proportion of common commuters
is always better when using an exponential law represented by
squares.

4.3 Spatial analysis

To better understand how CPC is spatially distributed at a
more granular level, we mapped the CPC by municipality for
three models and three study areas. In Fig. 4, it can be ob-
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Figure 3: Average CPC for the power shape (triangle) and the
exponential shape (square) for 34 French regions.

served that for all case studies (in rows) the highest values of
the CPC were obtained by municipalities using the model
with an exponential shape including the outside area (third
column). It can also be noted that the model without the out-
side area (second column) and themodelwith thepower shape
including the outside area (first column) give results that are
not wholly different.

As we can see in Fig. 4, the CPC values are not uniformly
distributed in the municipalities of the three areas. e error
seems to increase as distance from the urban areas increases.

We now focus on the third model with an exponential
shape including the outside area to better understand which
types of municipalities compose the three clusters (CPC≤
0.5, 0.5 <CPC≤ 0.75, and 0.75 <CPC). We identify the
number of out-commuters as the most explanatory variable.
Indeed, we can observe in Fig. 5 that the distribution of the
number of out-commuters in each cluster is significantly dif-
ferent. e higher the average number of out-commuters,
the higher the CPC. Having performed analyses of variance
(ANOVA) for each case study, we obtained significant differ-
ences between the averages for the number of out-commuters
in each cluster with a 0.95 percent level of confidence for each
case study.

For the three regions, the CPC value is strongly linked to
municipality characteristics. Indeed, the municipalities with
0.75 <CPC are urban and suburban municipalities with a
high number of out-commuters that are close to a large ur-
ban municipality. In contrast, the municipalities with a low
number of out-commuters that are far from large urban mu-
nicipalities have a CPC lower than 0.5. For this type of mu-

nicipality, the commuting flows are very small. us they are
difficult to reproduce with themechanisms taken into consid-
eration. However, the distance to cities does not appear to be
particularly responsible for the error. e timing for the job
offer arrival on the job market is probably much more signif-
icant in determining the local topology of the network than
elsewhere. ese flows represent about 4 percent of the total
number of out-commuters for the Auvergne region, 1 percent
for Bretagne, and 5 percent for Aquitaine.

4.4 Calibrating the model for French regions

e final problem involves the calibration process, which
previously required detailed and accurate data.

Fig. 6 shows the calibrated β values for each of the 34 re-
gions in France. It can be observed that these values display
subtle variations from about 1.7 · 10−4 to 2.4 · 10−4 with the
averageβ value (C = 1.94 · 10−4) corresponding to the dark
line.

en we hypothesize that it is possible to directly calibrate
the algorithm to generate the 34 regions in France by using
a constant equal to C . To study the influence of this approxi-
mationon the commonpart of commuters, wehave computed
theCPCwith C as the parameter value for the 34 regions. We
observe in Fig. 7 that the influence of the β value’s approxi-
mation on the CPC is very weak. It can then be noted that
the average CPC obtained with C is, for some regions, higher
than the CPC obtained by theβ value that is not averaged. It
is possible that the common part of commuters is better with
another beta value because it is not a calibration criterion.

It is not necessary to study the influence of the β value’s
approximation on the calibration criterion. Indeed, from the
studies made by Gargiulo et al. (2012), we know the CPC
and the calibration criterion show a significant correlation.
e CPC and the calibration criterion follow the same evo-
lution in terms of β. e β value for minimization of the
Kolmogorov-Smirnov distance is very close to the one ob-
tained for maximization of the CPC (see the figure 7 in
Gargiulo et al. (2012), which perfectly illustrates this rela-
tion). eCPCvalues remain quasi-identical toβ=C or toβ
valued from the calibration process presented in Section 3.1,
the quality of the approximation of the calibration criterion
(i.e., the commuting distance distribution) remains the same.

5 Discussion and conclusion

To study the rural area dynamics through micro-simulation,
we need virtual commuting networks that link individuals liv-
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Figure 5: Boxplots of the number of out-commuters in terms of theCPCbymunicipality for themodel with the exponential shape
with the outside area. (a) Auvergne case study; (b) Bretagne case study; (c) Aquitaine case study.
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Figure 6: e circle represents the average calibrated β val-
ues for 10 replications (the confident interval is com-
posed of the minimum and the maximum) for each
region; the line represents the averageβ value for the
34 regions.

ing in the municipalities of various French regions. As the
studied scale is very low, the flows are low, and we thus de-
cided to opt for a stochastic generation algorithm. e one
recently proposed by Gargiulo et al. (2012) is relevant to our
problem. Starting from this model, we implement the com-
muting networks of 34 different French regions. e imple-
mentation work leads us to solve three practical problems.

e first problem involves the fact that our French regions
are not islands. Indeed, some of the inhabitants, especially
those living close to the border of the region, are likely to
work inmunicipalities located outside the region of residence.
However, classical approaches to generating commuting net-
works consider only residents of the region that work in the
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Figure 7: Common part of commuters for the 34 regions.
e squares represent the average CPC (10 replica-
tions) obtainedwith the calibratedβ value; the trian-
gles represent the average CPC (10 replications) ob-
tained with the estimatedβ values (averageβ value
over the 34 calibratedβ values).

region. at is also the case for ours. Data providing details
or knowledge allowing the modeler to evaluate people living
in the region but working outside is difficult to obtain. us,
we address this issue by extending the geographical base of the
job search for commuters living in the municipalities to a suf-
ficiently large number ofmunicipalities located outside the re-
gion of residence. We compare themodelwithoutmunicipali-
ties located outside and themodel with outsidemunicipalities
to 23 French regions. We are able to come to a conclusion re-
garding the relevance of our solution that keeps the value of
our quality indicator identical. At the same time, it is not nec-
essary to have information regarding those who do not work
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in the region, which allows us to generate networks using only
the aggregated data.

eGargiulo et al. (2012)model is based on the gravity law.
en, our second problem relates to the deterrence function,
which is more of a power law or an exponential law depending
on the study. Moreover, as empirical studies comparing gener-
atednetworks to observeddata are extremely rare (Barthélemy
2011), few know which is better. In order to select the more
convenient one for our French regions, we have compared the
quality of generated networks for 34 regions obtained with
both the exponential law and the power law. Better results
were obtained with the exponential law, no matter the region.
Indeed, the 34 regions display significant variance in regards
to surface area, the number of municipalities, and the number
of commuters.

e final problem involved calibration. Applying a model
with an extended job search base and an exponential deter-
rence function, we found a constant equal to 1.94 · 10−4 to
be a perfect parameter value for generating commuting net-
works for French administrative regions, nomatter the region.
However, we did not test this result for other countries with
different types of administrative regions. e robustness of
this result to commuting networks of different scales has been
studied in Lenormand et al. (2012). eβ value correlated to
a scale consistent with the results obtained in this paper.

A spatial analysis of three different case studies has been
proposed, and it was shown that the CPC value by munici-
pality strongly correlated with the number of out-commuters
for the municipality. Our model is not able to reproduce very
small flows which represent between 1 and 5 percent of the
total flows in the region we studied. However, we continue to
question if it makes sense to attempt to reproduce them.
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Table 4: Description of the regions

ID Region
Number of
municip.
(region)

Number of
municip.
(outside)

Region area
(km2)

Average
municip.
area (km2)

Number of
commuters

FR1 Auvergne 1310 3463 26013 19.86 295776
FR2 Bretagne 1269 1447 27208 21.44 653710
FR3 Ain 419 2809 5762 13.75 162370
FR4 Alsace 903 3081 8280 9.17 440961
FR5 Aquitaine 2296 2835 41309 17.99 700452
FR6 Mayenne 261 3124 5175 19.83 69915
FR7 Lozère 185 1859 5167 27.93 12273
FR8 Poitou-Charente 1464 2467 25810 17.63 375363
FR9 Centre 1842 4718 39151 21.25 624693
FR10 Midi-Pyrénée 3020 3845 45348 15.02 546162
FR11 Limousin 747 3169 16942 22.68 139481
FR12 Franche-Comté 1786 3317 16202 9.07 268399
FR13 Haute-Normandie 1420 3536 12317 8.67 469335
FR14 Haute-Marne 433 3914 6211 14.34 42690
FR15 Vosges 515 3808 5874 11.41 92053
FR16 Lorraine 2339 3067 23547 10.07 547457
FR17 Creuse 260 1814 5565 21.40 23949

FR18 Languedoc-
Roussillon 1545 3046 27367 17.71 409116

FR19 Charente-Maritime 1948 1983 25606 13.14 375363
FR20 Haut-de-Seine 36 1245 176 4.89 973173
FR21 Yveline 262 1543 2284 8.72 618741
FR22 Val d’Oise 185 1707 1246 6.74 526600
FR23 Val de Marne 47 1234 245 5.21 642092
FR24 Haut-Rhin 377 2283 3525 9.35 183504
FR25 Tarn et Garonne 195 2338 3718 19.07 41600
FR26 Pyrénée-Atlantique 547 449 4116 7.52 65469
FR27 Alpes-Maritimes 163 353 4299 26.37 163445
FR28 Loire 327 2788 4781 14.62 178828
FR29 Territoire de Belfort 102 2031 609 5.97 45185
FR30 Seine-Saint-Denis 40 783 236 5.90 655200
FR31 Essonne 196 1597 1804 9.20 518321
FR32 Ardennes 463 2588 5229 11.29 59963
FR33 Aube 433 2728 6004 13.87 75561
FR34 Corréze 286 2088 5857 20.48 49815
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