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Abstract: Uncertainty in land use and transportation modeling has received increasing attention in the past
few years. However, methods for quantifying uncertainty in such models are usually developed in an academic
environment and inmost cases do not reach users of official forecasts, such as planners and policymakers. In this
paper, wedescribe thepractical applicationof amethodology calledBayesianmelding and its integration into the
land-use forecast published by the Puget Sound Regional Council, a metropolitan planning organization. e
method allows practitioners to assess uncertainty about forecasted quantities, such as households, population,
and jobs, for each geographic unit. Users are provided with probability intervals around forecasts, which add
value to model validation, scenario comparison, and external review and comment procedures. Practical issues
such as how many runs to use or assessing uncertainty for aggregated regions are also discussed.
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1 Introduction

Uncertainty is an inherent aspect of any forecast—and for forecast users, a valuable one to be mea-
sured. Simulation models only approximate real systems. Input data or parameters are measured or
estimated with varying degrees of accuracy, and models (and the systems they represent) are oen ex-
plicitly stochastic. However, official forecasts are usually published as point predictions, leaving end
users to make their own assumptions about forecast reliability. Both forecasters and end users would
be better served by comprehensible metrics that illustrate the limits of the forecast.

For greatest practical value, uncertaintymetrics should pertain to the units being forecasted. Fore-
casters have typically quantifieduncertainties only in some input components, if at all. Goodness-of-fit
statistics for models within a system and margins of error for inputs and parameters have diagnostic
value to themodeler, but they do little to explain the likelihood of alternative future outcomes. “High”
and “low” scenarios from varying inputs give the appearance of bounds but have no statistical basis.
Even simply repeating a simulation multiple times does not result in an accurate assessment of uncer-
tainty (Ševčíková et al. 2007).

Several disciplines have made strides in assessing and communicating forecast uncertainty, but
practical use outside of academia remains rare. Statistics Netherlands’ probabilistic population projec-
tions (de Beer and Alders 1999) have been among the first. Recently, the United Nations Population

aHSevcikova@psrc.org
b MSimonson@psrc.org
cMJensen@psrc.org

Copyright 2015 Hana Ševčíková, Mark Simonson, Michael Jensen.
Licensed under the Creative Commons Attribution – NonCommercial License 3.0.

http://jtlu.org
http://dx.doi.org/10.5198/jtlu.v{\@jtluvolume }i{\@jtluissue }.{\@jtluid }
http://creativecommons.org/licenses/by-nc/3.0


       .

Division also included probabilistic projections in their official forecasts (Gerland et al. 2014; Raery
et al. 2012; United Nations 2013). Pioneering academic studies have been written on the topic in
the context of land use and transportation forecasting. Examples include Brown et al. (2005); Duthie
et al. (2010); Pontius Jr and Spencer (2005); Pradhan and Kockelman (2002); Rodier (2005); Rodier
and Johnston (2002); Tayman (1996, 2011); Zhao and Kockelman (2002). However, until now such
metrics have not reached the point of inclusion in forecasts.

Our article describes what we believe to be the first incorporation of uncertainty assessment into
the development of an official land-use forecast published by a metropolitan planning organization
(MPO). e methodology for assessing uncertainty in the forecast is based on work by Ševčíková
et al. (2007) and Ševčíková et al. (2011) and is implemented as open source python code. e result-
ing uncertainty metrics played an important role in the process of producing the forecast, both during
model validation and during a subsequent external review and comment period. ey have been fa-
vorably received by forecast users, and we expect such information will play an increasing role in the
interpretation of future forecasts and scenario simulations.

e paper is organized as follows: Section 2 provides the forecasting context at Puget Sound Re-
gional Council (PSRC), including an overview ofUrbanSim (Waddell 2002;Waddell et al. 2003), the
land-use model system involved. Section 3 describes themethodology. e application of themethod
and its results, including aspects such as the impact of randomnumbers, and aggregations are discussed
in Section 4. Section 5 summarizes the implementation. Ways the forecast uncertainty were used are
discussed in Section 6, and Section 7 draws initial conclusions and outlines future efforts.

2 Land-use forecasting at PSRC

e immediate context for this work is land-use modeling at PSRC using the UrbanSim urban sim-
ulation system. UrbanSim is operational in several urban areas in the United States (Waddell 2010,
2011; Waddell et al. 2007) and Europe (Felsenstein et al. 2010). e system is implemented as a set
of interacting agent-based models that represent the major actors and choices in the urban system, in-
cluding households choosing residential locations, business choices of employment location, worker
choices of jobs, and developer choices of locations and types of real estate development. e model
system microsimulates the annual evolution in locations of individual households and jobs, including
the connection between them, and the evolution of the real estate within each individual geography
as the result of actions by real estate developers.

UrbanSim is implemented as part of the OPUS framework, or Open Platform for Urban Simula-
tion (Waddell et al. 2005), in Python code. Its flexible construction andmodularity allows it to be eas-
ily adapted to regional conditions; such adaptations can be implemented as separate Python packages.
OPUS also allows connections between the land-use models and an external travel model (Waddell
et al. 2010).

PSRC’s implementation uses exogenous household and job control totals (from amacroeconomic
model) and locates them into existing or simulated new/redeveloped built space within the region.
Operating on a parcel level, the models recognize detailed development constraints, attributes of ex-
isting buildings, job counts by sector, and synthesized attributes of households and persons, among
other inputs. Development inUrbanSim is influenced by price, which is altered throughout the simu-
lation using hedonic regression (Rosen 1974). Multinominal logit (MNL) models (McFadden 1974,
1978, 1981) are used to model discrete location choice of households and of jobs and to link workers
to jobs (Wang et al. 2011). e models are summarized in Table 1. Model segmentation or sampling
strategies can be adjusted appropriately to the phenomenon at hand. Maximum likelihood estima-
tion is used using primarily 2006 observed data, and each model cycle simulates a single year. For the
2013 land-use baseline forecast mentioned in this paper, PSRC used a 2000 base year, periodic travel
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Table 1: UrbanSim models in the PSRC application.

Model Method Description

Real estate price Hedonic regression Predicts prices of parcels.
Expected sale price Hedonic regression Predicts prices of possible real estate proposals.
Development proposal choice Weighted random sampling Chooses real estate proposals to be built (including

redevelopment) based on the expected sales prices
of proposals.

Building construction Rule based Demolishes buildings (for redevelopment) and
builds new buildings according to the chosen
proposals.

Household transition Random sampling Creates and removes households. It is driven by
macroeconomic predictions, which provide regional
control totals for households grouped by their
characteristics.

Employment transition Random sampling Creates and removes jobs. It is driven by macro-
economic predictions, which provide regional control
totals for jobs grouped by employment sectors.

Household relocation Weighted random sampling Determines households for moving.
Household location choice Multinomial logit with Locates moving households into buildings.

random sampling of alternatives
Employment relocation Weighted random sampling Determines jobs for moving.
Employment location choice Multinomial logit with Locates moving jobs into buildings.

random sampling of alternatives
Work at home choice Binary logit Simulates workers decision to work at home or

out of home.
Workplace relocation Rule based Simulates workers decision to change job.
Workplace choice Multinomial logit with Assigns workers to jobs.

random sampling of alternatives

model integration to update accessibility variables, and a 2040 horizon year. is is PSRC’s first pub-
lished forecast using UrbanSim; prior forecasts used adjusted output from DRAM/EMPAL and did
not include uncertainty metrics.

In addition to internal use, PSRC’s published forecast products are widely used throughout the
region for purposes including travel demand forecasting, utility forecasting, and capital improvement
planning. PSRC’s 6300-square-mile forecasting area is currently home to 3.78 million people; its con-
stituent jurisdictions include four counties, 72 cities, two tribes, and four port districts (a map of the
region can be seen in Figure 1). e agency serves as the federally designatedMPO for this area, and it
also has statutory responsibilities for growth management and economic development. e forecast
was developed with input from jurisdictional staff serving on a technical advisory committee, and it
underwent two extensive periods of public review (the first focused on inputs and the second focused
on forecast results) prior to publication.

3 Methodology

To assess uncertainty in the forecast, we use Bayesian melding, a methodology initially developed to
calibrate uncertainty in deterministic model systems by Raery et al. (1992, 1995) and Poole and
Raery (2000). Ševčíková et al. (2007) and Ševčíková et al. (2011) adapted the method to stochastic
models in a land-use and transportation forecasting context. e approach in this paper closely follows
the above publications and is summarized in this section.

Figure 2 may help to communicate the basic concept developed for deterministic models. ere
is a prior distribution of model inputs q(Θ) from which we draw input values Θi for i = 1, . . . , I .
e model runs I times from the starting point to the present and for each input Θi it produces as
output the quantity of interest, Φi . e model can be viewed as a mapping, M , from the space of
inputs to the space of outputs, which we denote by Φ = MΦ(Θ). e “present” time is defined as
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Figure 1: e PSRC region. Black lines delimit 219 forecast analysis zones, which are color-grouped
into 18 large areas.

a time point for which we have observed data available. We use the observed data, denoted by y ,
to compute a weight wi for each inputΘi : wi = L(Φi ). Here, L(Φi ) is the likelihood of the model
outputs given the observed data, L(Φi ) = Prob(y|Φi ). For each of the I runs, themodel is run forward
until a future time for which we make a prediction. e results of the i th model run are denoted by
Ψi . e posterior distribution ofΨ is approximated by a discrete distribution with valuesΨi having
probabilities proportional to wi .

In stochasticmodels, the conditional distribution of themodel outputs,Φ, given themodel inputs,
Θ (which is a pointmass at MΦ(Θ) for deterministicmodels), becomes a probability distribution. is
distribution incorporates both the stochastic nature of the model outputs and the variability of the
model error.

Let k denote an index of a geographic unit for which observed data y is available, i indexes the
simulation run, and l indexes the quantity of interest. en the model is defined as:

(yk l |Θ=Θi ) =µi k l + al + εi k l , where εi k l
i i d∼ N (0,σ2

i l ), (1)

for i = 1, . . . , I , k = 1, . . . ,K and l = 1, . . . , L. e quantityµi k l is the expected value of yk l under
the model givenΘi , εi k l denotes the model error, and al is the overall bias in the model predictions
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Figure 2: Illustration of the Bayesian melding method for deterministic models. e uncertain model
inputs,Θ, refer to the starting time of the simulation, t0, and the outputs,Φ. e data relevant
to the outputs, y , are observed at the “present” time, t1, while the quantities of interest, Ψ,
refer to the future, t2. e quantities Θi , Φi , and Ψi refer to the i th simulated values of
inputs, outputs, and quantities of interest, respectively.

of the l th output. e variance σ2
i l

and bias al are estimated by their sample equivalents:

σ̂2
i l =

1

K

∑
k

(yk l − âl − µ̂i k l )
2 , and (2)

âl =
1

I K

∑
i ,l

(yk l − µ̂i k l ) , (3)

where µ̂i k l is the predicted value of yk l from the i th simulation run.
is yields a conditional predictive distribution of our quantity of interest:

yk l |Θi ∼N (âl + µ̂i k l , σ̂
2
i l ) (4)

with the weights computed as

wi ∝ p(y|Θi ) =
L∏

l=1

K∏
k=1

1q
2πσ̂2

i l

exp

−1/2(yk l − âl − µ̂i k l )
2

σ̂2
i l

 . (5)

e quantities σ̂2
i l
, âl , and wi in Equations 2, 3, and 5 are estimated at the “present” time t1.

e marginal distribution of the l th quantity of interest, Ψk l , in the future year t2, is given by a
mixture of normal distributions:

π(Ψk l ) =
I∑

i=1

wi N
�

fa(âl , b a
l )+Ψi k l , fv (σ̂

2
i l , b v

l )
�

, k = 1, . . . ,K , l = 1, . . . , L . (6)

Here, b a
l

and b v
l

denote propagation factors of the bias and the variance, respectively, over the time
period [t1, t2] for indicator l . Furthermore, fa , fv ∈ {∗,+} are functions determining how the prop-
agation is applied.

To obtain uncertainty on a higher-level geography, one can either directly derive the posterior
distribution using aggregated simulation results and calibrate on aggregated observed data. Or, one
can draw a value for each k from the posterior distribution in Equation 6 and aggregate to the desired
geography. Repeating such draws many times approximates the posterior distribution of the quantity
of interest on aggregated geography.
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4 Application and results

4.1 Data and settings

4.1.1 Data

Currently, PSRC’s standard UrbanSim simulation begins in year 2000 (base year, t0). UrbanSim re-
quires highly disaggregate base year data. As previously noted, the Bayesian melding method also
requires observed data (y) at the “present” time, t1, or recent validation year, which can be less de-
tailed. We used household, employment, and population counts aggregated to 938 traffic analysis
zones (TAZ) for the 2010 validation year. ese were aggregated further into 219 forecast analysis
zones (FAZ) and 18 FAZ large areas (see map in Figure 1), the geographic units at which the forecasts
are currently published.

4.1.2 Time

Starting from t0 = 2000, we will use t1 = 2010 as the present year (in which Equations 2, 3, and
5 are evaluated) and run the simulation forward until t2 = 2040 (for which Equation 6 is applied).
Furthermore, we use 2006 and 2008 as additional values for t1 in order to estimate the propagation
factors b a

l
and b v

l
.

4.1.3 Number of runs

One of the conclusions in Ševčíková et al. (2007) is that variation in model inputs or the random
seed accounts for little of the total uncertainty. at suggests the parameter I can be relatively small.
Given the long run-time of PSRC’s (land use/travel model) integrated simulation, we reduced the
number of runs to I = 1. e resultant loss in precision is small, as will be shown in Section 4.2. is
also eliminates the need to compute the weights (Equation 5). e posterior distribution π(Ψk l ) in
Equation 6 then consists of only one (normal) component. For simplicity, in subsequent text we will
eliminate the index i where appropriate.

4.1.4 Quantities of interest

e method accounts for uncertainty in forecast quantities for which there is validation data—i.e.,
indicators measured for a more recent year than the base year (i.e., present). In the land-use forecast,
we used three indicators, namely number of households (l = 1), population (l = 2), and number of
jobs (l = 3). For brevity, we omit population from the display of results, due to its similarity with the
household results.

4.1.5 Transformation

Previous research in Ševčíková et al. (2007) showed that for quantities that represent counts, as it is
the case of our chosen indicators, a square root transformation should be used in order to obtain ap-
proximately constant variance of the model errors. In practice, this means that quantities y , µ̂, and
Ψ in Equations 2, 3 and 6 are all converted using a square root transformation. For example, using
l = 3 and k = 1, µ̂k l is the square rooted number of jobs in zone 1 simulated at time t1, andΨk l is
the square rooted number of jobs in zone 1 simulated at time t2.

4.1.6 Calibration geography

Our desired geography for publishing forecast uncertainty is FAZ as well as FAZ large area. However,
we have observed data on more disaggregated geography, namely TAZ. We will compare results from
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the two types of aggregations mentioned in Section 3 (i.e., a direct calibration on FAZ and FAZ large
area levels with results simulated from distributions obtained on the TAZ level).

4.2 Results

4.2.1 Calibration and propagation factors

Applying Equations 2 and 3 at present time t1 = 2010 for the three quantities of interest on the TAZ
and FAZ geography yield results shown in Table 2.

Table 2: Results of the calibration step at time t1. Here, Equations 2 and 3 were applied to the indi-
cators number of households (l = 1), population (l = 2), and number of jobs (l = 3), all on
the square root scale.

σ̂2
l=1

σ̂2
l=2

σ̂2
l=3

âl=1 âl=2 âl=3

TAZ 7.78 37.11 52.81 −0.11 0.43 0.27
FAZ 13.85 39.39 46.19 0.18 −0.30 0.89

We used the observed data at t1 = 2006 and t1 = 2008 to compute the same quantities and
determine the amount of propagation per year. For b v , the propagation factor of the variance, we
usedmultiple available simulation runs that differed in input parameters, data, ormodel structure. We
then took the median value of the resulting propagations. is yield values of b v

1 = 0.4d , b v
2 = 3.9d

and b v
3 = 2.2d where d = t2 − t1 = 30. ese values are to be added to the variance—i.e., fv in

Equation 6 corresponds to the “+” operator.
For b a , the propagation factor of the bias, we have not observed any systematic propagation. Fur-

thermore, as mentioned in Section 2, the total number of households and jobs in the region is con-
trolled by regional control totals obtained from macroeconomic forecasts. Adding a bias to the pre-
dictions would consistently increase or decrease themean outcomes; thus, the sum of themeans across
the region would be inconsistent with the control totals. erefore, we omit the bias and condition
our predictions on the control totals. Our experiments show that applying the bias fromTable 2makes
little difference in the predictions.

4.2.2 Varying random seed

To investigate to what extent our results change when we vary the random number sequence, we ran
multiple runs with different random seeds and used the methodology from Section 3 with I > 1 to
derive probability intervals in 2040. Figure 3 compares 95 percent intervals of such set of runs (red
lines) with ones derived from only one run—i.e., when I = 1 (blue lines) for selected FAZs. Empty
circles mark values from the multiple runs. Dots within the intervals mark posterior median of the
distributions. For each indicator, we selected 20 zones with the largest difference between the results
from multiple runs. at is, if only one run is used, the first zone from the le could experience the
largest difference when switching to a different random seed, and all remaining (199 unplotted) zones
will have a difference smaller than that of the zone on the right margin of the graph.

As can be seen, adding additional runs that differ in random seed does not impact the width of
the intervals in most cases. is confirms prior research, which found random seed variation is not a
major source of uncertainty—most of the uncertainty Bayesian melding is accounting for comes from
other sources. However, the distribution becomes wider for zones with larger differences, as can be
seen in the figure for the first few zones from the le, especially in the case of jobs, which suggests that
repeating the simulation a few times might be advantageous to capture such behavior. However, as
stated previously, for simplicity, in our published forecast we use I = 1, in which case the intervals are
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centered around UrbanSim outputs. e figure shows that such intervals contain the multiple runs
results in vast majority of cases.
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Figure 3: Ninety-five percent probability intervals in 2040 for a simulation with I = 6 (red bars) and
I = 1 (blue bars), with medians marked by dots, for 20 FAZs with the largest difference
between results frommultiple runs (empty circles). emultiple runs varied in random seed.

4.2.3 Aggregation

As mentioned in Section 3, there are two ways of deriving probability intervals for an aggregated ge-
ography:

1. By calibration: Observed counts and simulated results are aggregated to the desired geography
and the methodology from Section 3 is then applied.

2. By simulation: e methodology is applied to the disaggregated geography, for example TAZ.
en for each such zone k and indicator l , a large number, say J , of randomnumbers is sampled
from the distribution in Equation 6—i.e., in our case N (Ψk l , σ̂

2
l
+b v

l
d )with d = 30 (centered

around the [square root] transformed simulation result using the estimated variance propagated
into 2040). ese numbers are then transformed back to the original scale. For each l , the
resulting K×J matrix is aggregated along the first (spacial) dimension to the desired geography
and probability intervals can be derived from the second dimension. Optionally, a scaling of the
disaggregated matrix can be done to meet the regional control totals.

Our experiments show that the probability intervals derived by simulation are somewhat smaller than
when the calibrationmethod is used. is suggests that the calibrationmethod accounts for additional
uncertainty that is due to correlation between zones within their aggregates, and thus is preferable.
Figure 4 shows the difference for two indicators aggregated to FAZ large areas for the target year 2040.
While the calibration method uses observed data on the FAZ large area level directly, the simulation
method uses the TAZ results to simulate and aggregate to the FAZ large area level.
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Figure 4: Ninety-five percent probability intervals for the two methods of aggregation: by calibration
(red) and by simulation (blue). Results from the target prediction year (2040) are aggregated
to the 18 FAZ large areas. e by simulation intervals are derived by aggregating up from the
TAZ geography.

5 Implementation

Opus framework is available from the Subversion repository https://svn.urbansim.org. Most of the
generic functionality resides in the package opus_core. Within this package, the Bayesian meld-
ing methodology is implemented in the module bayesian_melding.py, with the main class called
BayesianMelding. e main method, called compute_weights, estimates the variance (Equation 2),
bias (Equation 3) and weights (Equation 5). ese parameters can be exported into a file using the
method export_bm_parameters and re-used in a later session using the class BayesianMeldingFrom-
File. Other convenience methods are available—for example, for generating posterior distribution
for future time point (Equation 6) or exporting probability intervals. e module contains a unit test
called test_bayesian_melding, which shows an example of how to use these classes and their meth-
ods.

6 Using uncertainty

With information about how confident we can be in our forecast results, new ways become available
to evaluate forecasts—and particularly, to compare multiple forecasts. Here we describe some ways in
which we integrated uncertainty analysis into our land-use forecasting process.

6.1 Model validation

Forecasting production runs are usually preceded by a tedious phase of model estimation and testing,
in which various alternatives of model structure as well as inputs and specifications are tested. In a
complex system of models such as UrbanSim, change to a single component can have significant ef-
fects on other components, so it becomes a non-trivial task to evaluate the effect of changes on the
simulation outcomes.

Our approach offers a straightforward way to compare two or more runs, using a single measure
per run—namely, the weights wi from Equation 5. e index i enumerates here the various runs to

https://svn.urbansim.org
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be compared. Intuitively, the higher the weight, the better the run validates to the observed data at
t1. e advantage of this approach is that it incorporates information about multiple quantities of
interest into one measure. To investigate the impacts relative to each quantity of interest l , one can
compare the variances σ̂2

i l
from Equation 2 for each i . e larger the variance, the larger the distance

of simulated results to the observed data.

6.2 Output review and refinement

To facilitate forecast review, PSRC circulated plots that featured for each FAZ the forecast result with
derived uncertainty in the form of 80 percent probability intervals, alongside past trends and previ-
ous forecasts (screenshot in Figure 5). e technical advisory committee provided us with comments
in the form of values that are to be expected in these geographies in the future according to the ex-
perts. Comments that fell within the 80 percent probability interval were more likely to be accepted
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Figure 5: Screenshot of a time series reportwith indicators and probability intervals displayed as a func-
tion of time for a selected FAZ. e green lines (run 219) show the current forecast median
with the 80 percent probability intervals as the shaded area. e red (run 199) and purple
lines (SAF) show the previous forecasts, and the blue line represents the trend data. Manual
adjustments are marked by black dots (denoted as “refined” in the table).

as adjustments prior to the final release (adjustmentsmarked in Figure 5 using black dots). Comments
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outside the interval were understood to suggest errors in model inputs or structure, and thus required
additional investigation and corroboration.

Note in the final reporting, the uncertainty progression starts at 2010 (t1) as opposed to 2000 (t0).
In our application, a so-called reset step is added, inwhichwe set the spacial distributionof the land-use
actors at t1 to observed data. us, we use simulation results from t1 to obtain all quantities needed by
the methodology, reset the t1 data to observed data, and simulate to t2. en, the propagation factor
discussed in Section 4.2 is reduced by t1− t0 = 10—i.e., d = t2− t1− 10= 20.

6.3 Forecast publication

e final derived probability intervals were incorporated into a land-use forecast validation report
(Puget Sound Regional Council 2013b), released concurrent with the full forecast products package
(Puget Sound Regional Council 2013a). Figure 6 shows a screenshot of the published information.
It includes 80 percent probability intervals (as lower and upper bounds) around the simulated values.
e choice of 80 percent bounds is due to its straight-forward interpretability: there is one chance in
ten that the true value falls below the interval and one chance in ten that it falls above the interval.

Figure 6: Screenshot of the published forecast that includes 80 percent probability intervals.

7 Discussion

Inclusion of uncertainty measures derived from a statistically grounded approach contributed to the
success of the PSRC 2013 Land Use Baseline Forecast. eir value has extended beyond the purposes
of review or validation; they remain salient to interpretation of the eventual forecast product as well.

Since land-use models are not used in isolation, concomitant uses suggest themselves, particularly
in terms of travel modeling. Several publications such as Duthie et al. (2010) cite land-use uncertainty
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as a major source of travel model forecast uncertainty. uantifying this via the approach described in
this paper may help toward propagating the uncertainty into travel model outcomes, as was done by
Ševčíková et al. (2011), for example.

e way simulation models are regarded and used is undergoing a gradual change, one which the
inclusion of uncertaintymetricsmay accelerate and deepen. Behavioral simulationmodels likeUrban-
Sim may, as a result of their sophistication, inform our expectations about potential future outcomes
in ways that less theoretically based models, such as gravity models, could not. Additionally, they can
be adjusted extensively to better represent the real system they simulate. As a consequence, we have the
opportunity to learn more through “dialogue with the model” than has been true in the past, and by
understanding the limits of themodel via uncertainty metrics, we better understand what conclusions
we may draw. At PSRC, forecast confidence intervals have already made a contribution in this regard.

e ability to use the model system as a learning tool is no better embodied than in scenario sim-
ulations, the next major planned application for UrbanSim at PSRC. e 2013 Land Use Baseline
Forecast gives information about the likelihood of future outcomes, given existing policies. Scenario
simulations could characterize how the probability of a future land-use outcome might change as a
result of altered policy, for example.

In this paper, we demonstrate how a methodology for assessing uncertainty in land-use models
developed in an academic environment was adopted into practical use by a public planning agency
and (to our best knowledge for the first time) used in an official land use forecast. e methodology
itself is not specific to land-use models; it can be applied to any simulation models that fit into the
framework illustrated in Figure 2. We hope this work contributes to the emerging efforts to incorpo-
rate uncertainty into the forecasting process by providing a feasible option for other practitioners to
draw from in their own implementations.
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