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Line Structure Representation for Road Network Analysis   

 

 

Abstract: 

Road hierarchy and network structure are intimately linked; however, there is not a consistent 

basis for representing and analysing the particular hierarchical nature of road network 

structure. The paper introduces the line structure – identified mathematically as a kind of 

linearly ordered incidence structure – as a means of representing road network structure, and 

demonstrates its relation to existing representations of road networks: the ‘primal’ graph, the 

‘dual’ graph and the route structure. In doing so, the paper shows how properties of 

continuity, junction type and hierarchy relating to differential continuity and termination are 

necessarily absent from primal and dual graph representations, but intrinsically present in line 

structure representations. The information requirements (in terms of matrix size) for 

specifying line structures relative to graphs are considered. A new property indicative of 

hierarchical status – ‘cardinality’ – is introduced and illustrated with application to example 

networks. The paper provides a more comprehensive understanding of the structure of road 

networks, relating different kinds of network representation, and suggesting potential 

application to network analysis. 
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1 Introduction 

Road network structure is routinely interpreted in terms of the configuration of roads in 

structures such as ‘trees’ or ‘grids’; but structure can also be interpreted in terms of the 

hierarchical relations between main and subsidiary, strategic and local, or through and side 

roads. In fact, these two kinds of structure – relating to configuration and constitution – are in 

some ways related. However, despite the proliferation of studies of road network structure, 

there is not a consistent basis for representing and analysing this dual nature of road network 

structure, either within traditions of network science or network design and management. 

On the one hand, broadly speaking, there are ‘network science’ approaches concerned 

with understanding the structure of networks, whether through empirical studies (e.g. 

Masucci et al., 2009; Strano et al., 2012) or modelling (e.g. Yerra and Levinson, 2005; 

Barthélemy and Flammini, 2008). These capture network properties such as average degree, 

clustering coefficient, average shortest path, meshedness,  betweenness centrality, webness or 

treeness (e.g., Claramunt and Winter, 2007:1033; Barthélemy, 2011:41; Xie and Levinson, 

2011); or general graph theoretic measures, such as alpha index, beta index, and so on (e.g., 

Kansky, 1963; Haggett and Chorley, 1969; Xie and Levinson, 2007). However, in general, 

these approaches tend to be ‘node-centric’ rather than ‘link-centric’ (Erat et al., 2008; Xie and 

Levinson, 2011) and there is less attention given to capturing measures of hierarchy arising 

from the differential continuity and termination of roads through junctions. This is to do with 

the difference in status between a main road and a side road: whereby the ‘main-ness’ of the 

former is due to its prevailing through its junction with the latter, while the ‘side-ness’ of the 

latter is due to its yielding upon the former. Barthélemy’s recent extensive review of network 

analysis (2011) does not mention hierarchical properties or relations of this kind – that 

paper’s focus lies elsewhere – but hierarchy of this kind is central to the present paper. 
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On the other hand, the creation and articulation of hierarchies of roads is of definite 

concern to road network design and management. Road hierarchy can be related variously 

with road function, design standard, infrastructure investment and maintenance, 

administration, wayfinding, route choice, traffic flows, transport modes and land uses (Jones, 

1986; Brindle, 1996; Marshall, 2005; Jones et al., 2007). However, conventional approaches 

to road hierarchy, while having an intuitive sense of differential continuity and termination, 

have given less explicit attention to capturing quantitatively the hierarchical structure of road 

networks. While tiers in the hierarchy may be labelled numerically (e.g. I, II, III), the 

articulation of structure itself has tended to be a matter of graphic depiction of hierarchical 

networks, with much of the structure left to be inferred or created through the intuition of 

designers (for example, MoT, 1963; AASHTO, 2001; Essex County Council, 1973; DfT and 

DCLG, 2007; Jones et al., 2007). Networks are often described only in loose descriptive 

terms (e.g. ‘hierarchical’ versus ‘non hierarchical’); commonly agreed indicators pinpointing 

different kinds of hierarchical structure are lacking. While hierarchical structure can already 

be inferred in ‘route structure’ analysis, or explicitly categorised in terms of ‘constitutional 

structure’ (Marshall, 2005), the link between these two has not been fully explored. 

This leaves a number of outstanding issues for resolution. For a start, it is not 

completely clear how different ways of representing network structure (such as via graphs or 

route structure analysis) relate to each other, or to different kinds of network structure (e.g. 

‘configurational’ versus ‘constitutional’ structure). Moreover, it is not clear how those forms 

of representation relate to properties that may be used to capture the nature of hierarchical 

structure – such as ‘more hierarchical’ versus ‘less hierarchical’ structures. 

Accordingly, this paper sets out to deepen and integrate understanding of the different 

kind of network representation, and their associated hierarchical properties, and to provide a 

more fully developed way of capturing road network structure. The paper first sets out the 
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scope of terms used and provides an outline of key issues for the representation of networks 

(section 2). In section 3, the line structure (S#) is introduced, including its expression as a 

diagram and its mathematical specification via incidence matrices. In section 4, the line 

structure is related to graphs and other existing means of network representation. Properties 

of continuity and termination conditions (CTC) are identified, allowing demonstration of the 

relation between the line structure (S#) and the primal and dual graphs (G’, G’’), and the ‘line 

set’ (S=) of individual lines’ continuity and termination conditions. Section 5 then discusses 

properties captured by the different representations; introduces a simple indicator of 

hierarchical status, namely ‘cardinality’; and also considers information (matrix size) 

required for specifying line structures relative to graphs. Section 6 demonstrates applications 

of line structure to analysing small example road networks. Section 7 draws conclusions on 

the significance of these findings and suggests future research and application. 

 

2 Representations of road network structure 

There is a profusion of ways of representing and analysing road network structure, found in 

the literature of mathematics, physics, network theory, spatial analysis, geography, transport 

planning and urban planning and design.  These include methods based on analysis of road 

centre-lines, named streets and axial lines; and employing so-called ‘primal’ and ‘dual’ graph 

approaches to network analysis. These different approaches yield a variety of different 

indicators of network structure. While there is richness in this diversity, there is also potential 

for confusion, complexity and contestation. The aim here is to bring clarity and integration, 

by first disentangling the different issues and then forging relationships between them. This 

section first sets out the scope of terms used, then addresses what aspects of the road system 

are to be represented, and then how those aspects are to be represented.  
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2.1 Use of terms 

In this paper, the terms road and road network will be used throughout, for the sake of 

consistency, though in many applications these roads will be streets, or they could be 

footpaths or other kinds of linear element where continuity through intersection of elements 

may be significant. The term road system is generally used to refer to roads in the most 

general sense (including their physical fabric); road layout refers to the two-dimensional 

aspect (including distances, widths, curvature, etc.), and network to its one-dimensional 

aspect (links and nodes, etc.). The term junction is used in the road network context to refer 

to any connection point between different roads, while intersection is generally used in the 

mathematical context to refer to any connections between lines, sets or other mathematical 

elements.  

The term line generally refers to a linear graphical element (whether curved or 

straight) used to represent a road or other linear real-world feature – which could in practice 

be a road centre-line, or even a bus ‘line’ (service). The term route refers to the kind of linear 

element representing a road in route structure analysis (section 2.3.5). Any graph can be 

described in terms of vertices and edges; these may also be referred to as nodes and links in 

the so-called ‘primal’ form of representation, in the context of road network diagrams. The 

‘primal’ and ‘dual’ graph representations are discussed in more detail in section 2.3.1.1 

 

 

                                                           
1
 This paper deals with ‘simple’ undirected planar networks where each road has two distinct 

ends (no loops) and no multiple edges (between a given pair of vertices); furthermore no road 

intersects with itself, nor with another road more than once. These conditions simplify the 

mathematical expression for demonstrative purposes herein, but the principles and analyses 

herein can readily be extended to other network conditions. 
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2.2 Elements for representation 

When considering aspects a road system to be represented, there will always be some degree 

of interpretation, and selective consideration of ‘what is being mapped’ in the context of 

some social or functional purpose (Godehardt, 1990:6; Peponis et al. 1998:574; Buckwalter, 

2001:127; Hillier and Penn, 2004: 507-8; Turner et al., 2004:427; Marshall, 2005; Turner, 

2007; Batty, 2008; Batty, 2010:2). 

Normally road network analysis abstracts from a two-dimensional planar 

representation of the road layout – a map – or a linear component thereof (Courtat et al., 

2011:036106-2). The question becomes how to get from two- or one-dimensional geometry 

to a topological representation suitable for structural analysis. A street layout may be 

represented by road centre-line data (Turner, 2007); by named streets (Jiang and Claramunt, 

2004a, b; Claramunt and Winter, 2007; Jiang, 2009); by axial lines (Penn et al., 1998) or 

axial graphs (Wagner, 2008); or by junction priority or the status of the road in a road 

hierarchy (Marshall, 2005) (fig. 1). 
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(b) (c) (d) 

Figure 1: Alternative ways of selecting linear aspects of the environment for inclusion in a 

road network model. (a) 2-D map; (b) road centrelines; (c) axial lines; (d) named road 

sections. Each representation may generate a different structure in the network model.  

 

Each of the alternative approaches (fig. 1, b, c, d) has its own advantages and 

disadvantages (see for example, Jiang and Claramunt 2002, Batty, 2004; Marshall, 2005; 

Porta et al., 2006b, Turner et al., 2005; Turner, 2007). The choice will concern the purpose 

and context of application, including the availability and format of data. In principle, it would 

seem reasonable that the representation should model elements – such as roads or their 

centre-lines – that are actually recognised and used in the design and management of the road 

system. This paper is not further concerned with which aspects of the road system are 

selected to generate the network model. The main point has been to separate this issue 

conceptually from the following ones. 

Main Street 

Back St. 

S
id

e
 S

tr
e

e
t 

 C
ro

ss
  

S
tr

e
e

t 

The 

Square 

 S
o

u
th

  

S
tr

e
e

t 



 

 

8 
 

 

2.3 Configurational representations 

2.3.1 Graph representations 

A graph (G) is a set of elements and relationships (see for example Gross and Yellen, 1999; 

Diestel, 2000; West, 2001; Wilson, 2010) whose diagrammatic expression in the form of a set 

of points and lines (Deo, 1974:89; Gross and Yellan, 1999:47; Clark and Holton, 1991:2) 

may be used to represent a wide variety of situations in which ‘points and connections 

between them have some physical or conceptual interpretation’ (Gross and Yellen, 1999:2). 

Graphs have been applied to many fields including engineering, electronics, social 

sciences, operations research (see for example, Barnes and Harary, 1983; Foulds, 1992). Of 

most direct relevance here, graph theory has found significant application to the analysis of 

transport networks where there is an intuitive and obvious relationship between the links and 

nodes in a transport network, and the edges (E) and vertices (V) in a graph G (for example, 

Kansky, 1963; Morlok, 1967:41; Bell and Iida, 1997:3,17; Banks, 1998:163; Buckwalter, 

2001:126; Barthélemy, 2011:6). This conventional approach – sometimes referred to as a 

‘primal’ approach (Porta et al., 2006a) – has been used in several recent analyses of road 

networks (Buhl et al., 2006; Cardillo et al., 2006; Porta et al., 2006a; Lämmera et al., 2006; 

Scellato et al., 2006; Masucci et al., 2009; Strano et al., 2012). However, there is also an 

alternative approach which is to represent linear elements such as roads as the vertices in a 

graph, and the intersections as edges – the so-called ‘dual’ graph.  

Figure 2 shows diagrammatic representations of three transportation networks (a, b, 

c), each of which could be represented by the same primal graph (G’)(fig. 2 d). However, for 

an air network, or ferry network (fig. 2 a), it may be assumed that each link represents a 

point-to-point service, that is, there is no continuity of services through nodes; for the rail 
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network, some services continue through nodes (fig. 2b), while for the road network (fig. 2c), 

there is (in this case) a continuous road through each junction. This means that the structure 

of these three networks is different; however, when represented as a primal graph (G’) this 

difference is not captured, that is, it is not embodied in the structure of the graph, and cannot 

be directly inferred from the diagram (though it might be appended by labelling or other 

association, indirectly). In other words, while cases (a), (b) and (c) each map to (d), we 

cannot infer from (d) a unique correspondence with (a), (b) or (c).  

 

 

(a)  

 

(b) (c) 

 

 

 

 

  

 (d) (e) 

Figure 2: Alternative ways of representing transport networks: (a) Baltic ferry network 

diagram (selected routes); (b) Australian rail network diagram (selected routes); (c) a road 

network diagram, featuring 4 roads (A–D), or 8 links (1–8) ; (d) ‘Primal’ graph (G’) 

corresponding to (a), (b) or (c); (e) ‘dual’ graph (G’’) corresponding to road network (c). 

 

To represent the continuity of roads through junctions, Figure 2 also shows how the 

road network (fig. 2 c) could alternatively be represented as a dual graph (G’’) (fig. 2 e). 
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Before going further it is necessary to clarify terminology. Although the terms 

‘primal’ and ‘dual’ have been used to describe the two kinds of graph representation shown 

in Figures 2(d) and (e), this usage is not ideal. First, mathematically, a dual of a graph G 

(denoted G*) traditionally means there is a direct correspondence between one and the other 

(such that (G*)*=G); but we cannot get directly from Figures 2(d) to (e), or vice versa. (As 

such, the term ‘dual’ might better be reserved for G* which would refer to relationships 

between the spaces and buildings (etc.) in the interstices between the roads; see for example 

Courtat et al., 2011). Secondly, the term ‘dual’ of itself may connote something secondary, 

derivative, or perhaps duplicative; but this seems unjustified, since both Figure 2 (d) and (e) 

can be obtained equally directly from (c).2 Nevertheless, the pair of terms ‘primal’ and ‘dual’ 

have the benefit of brevity, and convey a ready sense of connection and contrast between one 

and the other; moreover, a number of recent papers on road network structure have adopted 

this terminology. In this paper, for present purposes the ‘primal’ and ‘dual’ graph terms will 

be used, following the convention of Porta et al., 2006a, 2006b; but will also be denoted for 

convenience as G’ and G’’, which in future could be used independently of any particular 

labelling in English. 

Aside from terminology, the merits of using one kind of graph representation over 

another have been debated in the literature. Three reasons in favour of the primal over the 

dual representation are: (i) compatibility with established conventions across different fields 

(Batty and Rana, 2004:616) (i.e. Figure 2 d relates c to a and b); (ii) the primal graph 

                                                           
2 Alternative terms for ‘dual graph’ have been suggested, such as ‘second-order topology’ 

(Courtat et al., 2011); but this also suggests that this graph is somehow further removed from 

the original network. In representing linear elements as vertices, the ‘dual’ graph is similar to 

the ‘line graph’, ‘interchange graph’ or ‘edge graph’ 

(http://mathworld.wolfram.com/LineGraph.html); however in the case of the line graph, it is 

a direct transposition from the normal graph; this direct transposition does not apply with 

‘primal’ and ‘dual’ graphs of Figures 2 (d) and (e). 
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maintains the natural visual association – the linear elements on the ground are represented 

by linear elements in the graph (Batty, 2004); while (iii) the dual ‘privileges’ lines or streets 

as the focus of interest, rather than locations or intersections (Batty, 2004:3). Meanwhile, 

other authors have employed or put forward the case for the dual representation (Porta et al., 

2006b; Jiang and Claramunt, 2004a:169; Jiang, 2007:647; Masucci et al, 2013). Which of 

these arguments applies or proves critical will vary according to context. But for now, let us 

consider in more detail some reasons for the importance of considering the dual approach, for 

representation of road networks. These are: (1) Focus on linear elements; (2) Constitution of 

lines between intersections; (3) Continuity of lines through intersections. 

 

2.3.2 Focus on linear elements 

Graph theory applications allow understanding of elements of a given type through their 

relationships with other elements, where typically the vertices represent the elements, and the 

edges represent the relationships (Godehardt, 1990:8) (Table 1).3 For example, the relation 

between cities (represented by vertices) can be understood by their road connections 

(represented by edges) which happen to be physically linear. As Erat et al (2008) note, 

“transport networks are embedded in real space where nodes and edges occupy precise 

positions in the three dimensional Euclidian space and edges are real physical connections.” 

This physical linearity applies to roads (the primary focus of this paper), and also to river 

systems, tree branches and engineering structures. 

 

                                                           
3
 In many cases, the element is in a sense primary (i.e. a first order object) because the 

elements can exist without relationships, but the relationships cannot exist without the 

elements (formally, V≠Ø; Wilson, 2010:8). If there are no people, there can be no social 

relationships; if there are no atoms, there can be no molecular bonds. 
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Table 1: Elements and relationships suitable for graph representation (after Wilson and 

Beineke, 1979; Clark and Holton, 1991; Gross and Yellen, 1999). 

Context Element (vertex) Relationship (edge) 

Social networks 

Food chain 

Chemistry 

Sport 

Linguistics 

Activity-scheduling 

Architecture 

Transportation 

People 

Organism 

Atom 

Team 

Word 

Activity 

Rooms 

City 

Social ties 

Consumption 

Molecular bond 

Matches between teams 

Grammatical relationship 

Path dependency 

Walls or doorways 

Transport link 

 

However, just because an entity happens to be physically linear – whether a road, 

river, tree branch or structural member – does not preclude its representation as a vertex in a 

graph, when that linear element is the primary focus of attention. In the case of road 

networks, the individual roads (though linear) can be represented as vertices, while their 

connections (i.e. junctions) can be represented as edges. This ‘dual’ approach seems justified 

when the roads themselves are indeed the primary focus of attention. 

 

2.3.3 Constitution of lines between intersections 

Graph representations – with their categorical distinctions between vertices and edges – make 

sense because the vertices and edges typically relate to categorically different kinds of thing: 

in a social network, people are categorically distinct from social ties; in sport, teams are 

categorically distinct from fixtures. Moreover, in a graph there is nothing existing ‘between’ 

two elements, but the relationship itself. (There are no persons ‘halfway along’ a social tie.) 

What comprise vertices and edges are mutually exclusive (i.e. V∩E=Ø; Diestel, 2000:2). 
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But for a road network, at the level of resolution considered here (i.e. where nodes 

represent junctions, rather than whole cites), there is not such a categorical difference 

between what happens along a road and what happens at the ends of the roads or their 

intersections. (For urban streets, the distinction is particularly blurred, because a street is not 

just a conduit between urban destinations but can be a destination in its own right; indeed a 

section of street frontage between intersections is more likely to be a destination than an 

intersection.) So while it may be visually intuitive to represent linear roads by linear links in a 

graph, it is arguably not so natural to divide the elements of the road network into two sets as 

shown in Figure 3; this invites the possibility for alternative representations. 

 

 

 

 

 

Figure 3: Deconstruction of the primal graph representation (G’). The three kinds of road 

network element represented by nodes (N1, N2, N3) have no more in common with each other 

than they have with the elements represented by links (L); hence the classification of 

elements implicit in the ‘primal’ representation is in a way artificial. 

 

2.3.4 Continuity through intersections 

Topology and graphs are often associated in network analysis, but we can recognise a 

difference in emphasis between the two: in graph theory, the emphasis tends to be on the 

connectivity between discrete entities, (Hayes, 2000:9) whereas topology is centrally 
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concerned with continuity of entities (Bredon, 1997:1). In the context of road network 

representation, the question becomes: which aspect is more significant – the continuity of a 

road, or its decomposition into discrete segments? For example, consider a situation where a 

main route goes through a town from one end to the other and has several side roads (for 

example, fig. 1, fig. 2c). Is it more important that we recognise the main route (A) as a single 

continuous entity, with several roads off it; or that we recognise a set of eight individual road 

segments, some of which may happen to join points (1-4) ‘in series’? (This is a question 

typically overlooked in those studies that go straight to the primal graph). The graphs (G’ and 

G’’) in Figures 2 (d) and (e) show different interpretations of the same network; one 

representation is not intrinsically better than the other. The value of either will depend upon 

the particular purpose and context of application; but where the structure of a network is 

concerned (as opposed to, say, spatial centrality of locations), it seems that the relation 

between main and subsidiary elements must be intrinsically worth considering.  

 

2.3.5 Direct representations of continuity plus segmentation 

There are a variety of existing approaches to road network representation and analysis which 

directly represent roads as continuous entities – that may be continuous through junctions – 

and not broken into discrete segments that (only) span between junctions (e.g. Thomson and 

Richardson, 1999; Marshall, 2005; Turner, 2007; Jiang, 2007; Tomko et al., 2008).  

Of particular interest here is the route structure analysis approach (Marshall, 2003), 

because it combines the recognition of the continuity and segmentation of routes. The small 

network in Figure 2 (c) can be interpreted as a route structure. It simultaneously embodies a 

set of 4 routes (elements that are continuous through junctions) and 8 links (segments). Route 

structure analysis uses as its basic element the route, which may be derived from a road 

layout according to a number of criteria, which could include named streets and continuity of 
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physical alignment, as used in other nominally distinct approaches. What is important here is 

that the analytic part of route structure analysis uses elements that are continuous through 

junctions – howsoever that continuity may be obtained or defined – while also taking account 

of segmentation. Although route structure analysis has not been widely applied in road 

network analysis, it is of interest here because it explicitly considers the continuity of routes 

through junctions, both in terms of visual representation and analysis of properties such as 

‘continuity’, and how this relates to the hierarchical structure of road networks.  

Route structure analysis may be perceived to be distinct or even somehow removed 

from conventional primal (G’) and dual (G’’) graph approaches; and yet, the questions arises 

as to how it might be linked to these. Other forms of network representation – such as axial 

maps and line segments – also use some kind of line that is continuous through intersections 

to represent roads that are continuous through junctions. This paper therefore considers what 

kind of mathematical entity might underpin these forms of representation, which shall be 

identified herein as a line structure. The properties of this mathematical object are discussed 

in the next section (3), and their relation to G’ and G’’ discussed in section 4.  

 

 

3 Line structure  

A point is that of which there is no part. And a line is a length without breadth. And 

the extremities of a line are points. – Euclid, Elements.4 

                                                           
4 Euclid’s Elements has been described as the most influential textbook – not just in geometry 

but in the history of civilization (Faber, 1983). This particular translation (Fitzpatrick, 

2008:6) is used to emphasise the continuity between the first three axioms. Euclid’s fourth 

axiom refers to a straight line; this straightness takes us into elements of geometry that lie 

beyond the scope of line structure. 
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3.1 Basics 

Let us use the term line structure to denote a ‘topological’ structure made up of lines. Here, 

lines connote abstract mathematical entities representing real-world features that are linear, 

such as roads. Structure connotes that we are dealing with relationships between connected 

sets of elements. So a line structure could be used to represent a network (connected set) of 

roads. Topological means that we are only interested in certain topological properties of the 

structure, such as order and incidence, continuity and connectivity. In contrast to Euclidean 

geometry, we omit consideration of the metric length of the line, its orientation, and whether 

it is curved or straight. But what is retained is the sense that a line is constituted by points, at 

and between extremities and intersections, and that a line may terminate on another line, or 

may continue through an intersection (fig. 4).  

 

 

 

 

 

 

Figure 4: Line structure elements retained from Euclidean geometry (after Mackay, 1893:1). 

(a) A line, having two ends, each of which is a point. (b) Two lines connecting. One is 

continuous through the point of intersection. (c) Two lines intersecting; both are continuous. 
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Indeed we have already seen this kind of structure, unremarked, earlier in the paper: 

the diagram depicted in Figure 2(c) could be interpreted as a line structure. In fact, this kind 

of diagram crops up from time to time elsewhere in the literature (for example, Bejan, 1996; 

Marshall, 2005; Masucci et al., 2009), but is typically unremarked in terms of the kind of 

representation it constitutes.  

A line structure may be drawn so that each straight line is considered a single entity 

(fig. 5). In Figure 5, line A is continuous through its intersection with line C; while line B is 

continuous through its intersection with lines D and E. Elsewhere, where road sections may 

be physically collinear (e.g. through a junction), but have separate identities, this can be 

shown by labelling or artificially deflecting the lines. Otherwise lines may be depicted 

visually as curved to allow changes of orientation while indicating continuity. Where a line is 

broken, i.e. has an angular (not curved) change in direction, this is considered more than one 

line, unless indicated otherwise. For example, in Figure 5, A and B meeting at 90 degrees are 

two separate lines, and D and E meeting at an acute angle are separate lines. (Straightness of 

lines in Figure 4 is used solely to visually indicate continuity; the lines could be curved as 

long as it is clear which lines are continuous.) 

  

 

 

 

 

 

 

 

 

Figure 5: A line structure, S#, comprising 5 lines {A, B, C, D, E}.  
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In fact, it is possible to interpret a route structure, axial map, or any connected set of 

lines that are continuous through intersections (e.g. Bejan, 1996; Masucci et al., 2009), as a 

line structure. The difference (or equivalence) between a line structure and a route structure 

(or axial map, etc.) is analogous to the difference (or equivalence) between a graph and a 

conventional ‘link and node’ network diagram, in the following way. 

A conventional road network diagram is an analytic or representational device, 

comprising nodes (or junctions) and links, used in the road network context. It can be 

interpreted mathematically as a graph. A graph itself is an abstract mathematical entity, 

comprising sets of elements (vertices and edges). A graph need not represent a network nor 

take the form of a diagram. 

A route structure is an analytic or representational device, comprising routes and 

junctions or joints, used in the road network context. Similarly, an axial map is an analytic or 

representational device, comprising axial lines and their intersections, used in the context of 

road networks or other spatial configurations. Both route structures and axial maps can be 

interpreted as line structures. A line structure itself is an abstract mathematical entity (a 

linearly ordered incidence structure) comprising sets of elements (lines and their 

intersections). A line structure need not represent a network, nor take the form of a diagram. 

The question becomes how can we define such a kind of line structure 

mathematically, and what are the consequent properties. 

 

3.2 Line structures as incidence structures 

A full formal mathematical account of the definition and consequent properties of line 

structures would take us into realms of abstract mathematics that do not directly concern road 

network analysis. For present purposes it shall suffice to say that a line structure can be 

thought of as a kind of linearly ordered incidence structure. An incidence structure S may 
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take the form of a triple (X, Y, I) where X is a set of lines, Y a set of points and I the set of 

incidence relations between X and Y (see, for example, Buekenhout, 1995; Rosen, 2000). 

Conventionally, the elements of any X and Y are not ordered; hence if X={xi, xj, xk}, then i, j 

and k are in no particular order, and {xi, xj, xk}≡{xi, xk, xj}, etc.  

We can then recognise a line structure (S#) as a special kind of incidence structure (L, 

P, I) in which the elements (i.e points) comprising each line (L) are linearly ordered: for any 

line L, i<j<k, hence {xi, xj, xk}≠{xi, xk, xj}. Moreover, points lie on lines; or put another way, 

the incidence relations between lines are points. This means that to specify S# we only need to 

specify two components (L, I) or (L, P). Such an incidence structure can be specified by some 

sort of incidence matrix (see next section). 

In fact, an incidence structure (depending on exactly how defined) could be seen as a 

generalisation of a graph – a more general kind of structure, against which a graph is but a 

specialised (limited) kind of incidence structure in which certain elements (edges) connect 

only pairs of other elements (vertices). In an incidence structure, elements may contain any 

number of other elements. Hence, put simply, in a line structure, a line may go through any 

number of points. This allows it, intrinsically, to represent continuity through points of 

intersection, in a way that a conventional graph (directly, and visually) necessarily cannot. 

 

3.3 Line structure specification by incidence matrices 

In fact we can identify two different variants of line structure: one continuous, the other 

discrete. These will be referred to as the parametric line structure and the ordinal line 

structure. These are graphically equivalent – that is, when drawn on the page they have the 

same structure of lines – but are mathematically distinguishable in that in the parametric line 

structure, lines are constituted by a continuum of points (as in Euclidean geometry), whereas 

in the ordinal line structure, the only points discretely defined are those such as intersections 
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or pendant ends. Either way (and, in common with graphs), these line structures can be 

considered as sets of elements and relationships, even without their being represented as 

lines. 

 

3.3.1 Parametric line structure 

In a parametric line structure SP
#, each line is a linear continuum of points, as in Euclidean 

geometry. Hence to define SP
# we need to specify the end points and intersection points of 

each line. In Cartesian (coordinate) geometry a line may be represented in terms of x and y 

co-ordinates; or in terms of some other parameter (via parametric equations). Here, we 

specify the lines in terms of parameters, such that a line is a linearly ordered set of points on a 

given interval. We can apply the following conventions: 

1. Each line Xi has a parameter xi indicating position along the line, equivalent to the 

abscissa (x-value) along the x-axis in co-ordinate geometry. Here, however, there is no 

Cartesian plane, just a set of lines, each of which is its own ‘axis’. In Figure 6, line A has a 

parameter a, and line B has parameter b, and so on. 

2. Let this parameter xi be a real number, being 0 at one end of the line and 1 at the 

other. Hence any line Xi = {xi∈R | 0≤xi≤1}. By this convention, we can represent the fact that 

a line could in principle extend below parametric value 0 or exceed 1, but that only the line 

segment between 0 and 1 inclusive is part of the network under scrutiny. Note that the values 

of the parameters here may be flexibly allocated – for example the intersection points along 

line C are given here as c=⅓ and c=⅔ but those could be any fractional values as long as they 

are in the correct numerical order (e.g. they could be c=0.1 and c=0.2, etc).5 

  

                                                           
5 Alternatively, these could be specified proportionately in relation to metric distance. 

However, this possibility is not pursued further in this paper. 
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Figure 6: A parametric line structure, SP
#.  

 

Any point on a line X can be specified by the value of parameter x; therefore the set of 

points (P) in SP
# is ‘internalised’ in the parametric definitions of the lines (L). Furthermore, 

an intersection point can be specified by the two (or more) lines intersecting (P=I⊂L×L). Any 

point can be expressed as a combination of the parametric values of any or every line in the 

set. So a point Y can be expressed as Y (x1Y, x2Y, …, xnY), where xiY is the parametric value of 

the point Y on line xi. 

In Figure 6, let O be the point (0, 0, –, –, –) where a=0, b=0 and the dash (–) indicates 

that O does not lie on lines C, D or E. Let P be the point (½, –, ⅓, –, –), and so on. Hence, 

using this ‘coordinate topology’, all intersection points can be specified. A parametric line 

structure SP
# can hence therefore be specified as follows: SP

# = (L, P); L = {X1, X2,  X3, … Xn}; 

Xn={xi∈R | 0≤xi≤1} for each of n lines; P = {Y1, Y2, Y3, … Ym}; Ym (x1Y, x2Y, …, xmY) for m 

intersections. 

In Figure 6, the line structure SP
#

 is given by: SP
# = (L, P); L = {A, B, C, D, E}; 

A={a∈R | 0≤a≤1}; B={b∈R | 0≤b≤1}; C={c∈R | 0≤c≤1}; D={d∈R | 0≤d≤1}; E={e∈R | 

0≤e≤1}; P={O, P, Q, R}; and 

O (0, 0, –, –, –) 

P (½, –, ⅓, –, –) 

a=0 a=1 

d=1 d=0 

b=1 

b=½ 

c=⅓ 

c=⅔ 

a=½ 

c=0 

c=1 

b=0 

A 

B 

E 

D 

C 

e=1 

e=0 

O P 

R 

Q 
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Q (–, ½, –, 0, 0) 

R (–, –, ⅔, 1, –) 

 

The line-ends, and all intermediate points between intersections, are therefore 

included implicitly (e.g. the existence of a point at a=0 is inferred, even if not explicitly 

specified). The set of points (topological coordinates) can be represented as an m x n 

incidence matrix, where m is the number of intersection points (m=|P|) and n is the number of 

lines (n=|L|). This can be referred to as the parametric point matrix, with the general form: 

 

��(��) �
(��) … ��(��)

��(�
) �
(�
) … ��(�
)

… … …

��(�
) �
(�
) … ��(�
)

  

 

In the parametric point matrix, each value xi(Yj) means the parametric value xi along 

line Xi at the point Yj. Each value in a given column must be unique (else two points would be 

coincident). Each column can have at most one entry with a value of 0, and at most one entry 

with a value of 1 (indicating the end points of the associated line); it may have any number of 

distinct intermediate values between 0 and 1. For the network in Figure 6 this gives: 

� � � � �

O 0 0 − − −

P ½ − ⅓ − −

Q − ½ − 0 0

R − − ⅔ 1 −

  

 

In this case, each row in the matrix gives the topological (parametric) coordinates of 

each point (see definitions of points O, P, Q, R earlier). Each column gives the intersection 

points along a line, so for example, line C has intersection points at P (at c=⅓) and R (at c=⅔) 

(fig. 6). 
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The line structure may alternatively be expressed in the form of a parametric line 

matrix. Here, we have an n×n matrix, where n is the number of lines (n=|L|), and where each 

value xi(Xj) indicates an incidence relation I, where I⊂L×L. Specifically, each value xi(Xj) 

means the parametric value xi along line Xi at its point of intersection with line Xj (i≠j). 

 

− �
(X�) … ��(X�)

��(X
) − … ��(X
)

… … …

��(X�) �
(X�) … −

 

 

For the line structure in Figure 6, we get:  

� � � � �

A − 0 ⅓ − −

B 0 − − 0 0

C ½ − − 1 −

D − ½ ⅔ − 0

E − ½ − 0 −

 

  0≤a, b, c, d, e≤1 

 

This line matrix tells us, for example, that (reading across) line A intersects line B at 

b=0, and line C at c=⅓; or that (reading down) line A intersects line B at a=0 and line C at 

a=½. Note that the positions of numerical (non-dash) values are symmetrical about the 

primary diagonal. As with the point matrix, the line matrix – together with the specification 

of the range values of a, b, c, d, e – gives a complete specification for the line structure. (This 

implicitly includes all positions along all the lines, including, for example, points at c=½ or 

d= ¼, etc.) 

Overall it can be understood that a parametric line structure is a topological structure 

one step removed from linear Euclidean geometry: a parametric line structure does not have 

absolute location, orientation, metric length or curvature, but lines are composed of a linearly 

ordered set of points, which can indicate positional and structural information. 
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In terms of representation of the real world, the parametric line structure (SP
#) – unlike 

the graph – can have lines with any number of points along them representing the continuity 

of roads with an indefinite number of points along them (whether intersecting or otherwise). 

In other words, line structure is not simply a matter of visual presentation of a structure, but is 

about the fundamental fit of a mathematically continuous entity (line) with a physically 

continuous entity (road) on the ground. 

 

3.3.2 Ordinal line structure  

We can also recognise an ordinal line structure SO
#

 where the lines comprise only discrete 

end-points and intersection points, but no ‘intermediate’ points as in SP
#. Indeed we can 

recognise an ordinal structure as a structure (intersecting set) of linearly ordered discrete 

sets, where each linearly ordered set can be drawn as lines (as with a graph) and hence used 

to represent a road network. The ordered sets could be sets of numbers, or letters, or any other 

set with a definite order of distinct (non-recurring) elements. 

Let SO
# be the set of lines L and points P; where L = {X1, X2, … X3} and where any 

line Xi comprises a linearly ordered set of n elements, {x1, x2, …, xn}, being the linearly 

ordered set of discretely identified points along the line. Since order matters, {xi, xj, xk } ≠ {xi, 

xk, xj}. In Figure 7, L={A, B, C, D, E}; P={1, 2, 3, 4, 5, 6, 7, 8, 9}; A={1, 2, 3};  B={1, 4, 5}; 

C={6, 2, 7, 8}; D={4, 7}; E={4, 9}. This set of information completely specifies SO
#.  

The ordinal line structure has the same graphic profile as the parametric one, although 

(where appropriate) we could distinguish the two by using a dashed line for SO
# to indicate 

that there is ‘nothing’ between the points. Compared with the parametric line structure, the 

ordinal structure loses the continuum of points between intersections and end points; but 

gains explicit naming of end and intersection points as part of the specification. Either way 

the integrity of the lines is maintained, and their continuity through intersections.  
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Figure 7: An ordinal line structure SO
#, 

corresponding with Figures 5 and 6. 

 

Like SP
# , an ordinal structure  SO

# can be specified in the form of an ordinal point 

matrix (L×P). Here, rather than parametric values, the entries are ordered points along the 

line, e.g. A1, A2, A3 (or numerical labels 1.1, 1.2, etc.). Unlike SP
#, we need to specify the 

existence of pendant ends, since they cannot necessarily be inferred: 

 

� � � � �

1 #� $� − − −

2 #
 − &
 − −

3 #( − − − −

4 − $
 − *� +�
5 − $( − − −

6 − − &� − −

7 − − &( *
 −

8 − − &0 − −

9 − − − − +


  

 

We can also specify an ordinal line matrix, where the positions are Xi along each line:  

� � � � �

A − $� &
 − −

B #� − − *� +�
C #
 − − *
 −

D − $
 &( − +�
E − $
 − *� −

 

   

5 

2 1 

6 

3 

4 

A 

B 

E 

D 

C 

7 

8 9 
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From this line matrix we can infer coincident points – these being symmetrical across 

the primary diagonal, such as A1 corresponding to B1 (also, we can infer B2=D1=E1). 

However, this does not yet give a complete specification of the structure; for a complete 

specification, we would also need to separately specify the set of pendant ends – in this case, 

to thereby include A3, B3, C1, C4 and E2 – for all lines. 

As a set of elements and relationships, an ordinal structure (like incidence structures 

in general) can be seen as a more general form of a graph, where elements (points) are not 

just related in pairs, but in strings of any number (n∈N) of linearly ordered elements. 

Conversely, a graph can be seen as a special kind of ordinal structure, in which all the linear 

sets have only two elements (n=2). (In the incidence matrix for a graph, equivalent to the 

ordinal point matrix (L×P), each column would have exactly two entries, as in the case of 

column d or e in the ordinal point matrix above.) In moving from an ordinal structure SO
# to a 

primal graph G’, the lines are broken into individual line segments, where each line segment 

joins two nodes. In effect, a line L {1, 2, 3, 4} becomes three links, {1, 2}, {2, 3} and {3, 4}. 

The graph G’ is an extreme case where every line (linearly ordered set) that could be further 

decomposed into individual line segments (element pairs) is so decomposed. This invites 

further scrutiny about how the line structure and graph formats relate to each other.  

 

4 Relation between line structure and other representations  

4.1 Line structure versus graph representations 

Figure 8 (a) shows a sketch of an arboreal tree, with a trunk and four branches. Below this, 

Figure 8 (d) shows a line-structure representation of the tree. From this line structure, we can 

tell several things about the real-world object that it represents: that it has a trunk (A) that has 

three branches off it (B, C, D), and that the first branch up (B) itself has a branch off it (E). 
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 (a) (b) (c) 

 

 

S
#
 

 

 

 

 

 

 

 

 

 

 (d) (e) (f) 

 

 

G’ 

 

 

 

 

  

 (g) (h) (i)  

 

 

G” 

 

 

 

 

  

 (j)  (k) (l) 

Figure 8: Representations of tree structures. Real-world entities: (a) tree; (b) road layout; 

(c) engineering structure. Line structures (d), (e) and (f) are equivalent to each other, and 

represent any of (a), (b) or (c). Primal graphs (g), (h) and (i) are equivalent to each other, 

and also correspond to (d), (e) or (f). Dual graphs (j), (k) and (l) are equivalent to each 

other, and also correspond to (d), (e) and (f) – but not directly to (g), (h) or (i). 
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The trunk is the longest element, comprising four line segments. The first branch up 

comprises two line segments while the remaining branches comprise one line segment each.  

 The same line structure (fig. 8 d) could also be used to represent the road layout in 

Figure 8 (b) with its through (trunk) road and four side roads; or the engineering structure in 

Figure 8 (c) comprising a central column and four cantilevers. Alternatively, curved (fig. 8 e) 

or orthogonal (fig. 8 f) variants of the line structure representation could be used. In each 

case, the same five linear elements are identifiable, and the same relations between primary 

and subsidiary elements are fixed; for our purposes Figure 8 (d), (e) and (f) are topologically 

equivalent line structures, and could be used to represent any of the entities in Figure 8 (a), 

(b) and (c). 

Now consider the third row (fig.8 g–i). Here, the tree structure is represented as a 

primal graph, in three equivalent variants. In moving from the second to third row, the graph 

loses the continuity of the trunk – and indeed the identity of the trunk as a single coherent 

entity (A) – and the hierarchical distinction between trunk, branch and branch-off-branch. In 

other words, while the graph maintains the ‘configurational’ (acyclic) sense of tree structure, 

it loses the ‘constitutional’ (hierarchical, trunk-and-branch) sense of tree structure. 

Next consider the fourth row, representing equivalent dual graphs (fig. 8 j–l). Here, 

the trunk and discrete branches retain their identities as elements (A–E), but the 

representation does not distinguish between them: one could not be certain which vertex 

represented the trunk and which the branches.  

Graph theory is infused with arboreal metaphors: trees, leaves, forests, arborescences 

and even arboretums. But a graph cannot intrinsically distinguish a trunk from a branch. In 

effect, the graph format is so flexible – it can represent so many different kinds of thing – that 

we lose something real about structure. Meanwhile, some artificial features are added. What 

is artificial is the conflation of referents under the artificial concept of the node: for a tree, a 
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node can variously represent (i) the base of the trunk, (ii) the tips of the twigs or (iii) joints 

between branches – as if node (i) were more like node (ii) or (iii) than the wood lying 

between (i) and (ii) and (iii).6 These losses and artificial additions may or may not be 

practically significant; the significance will depend upon the purpose and context of 

application and must be taken into consideration when creating particular network models for 

analysis. 

What is of concern here is the fundamental theoretical nature of these mathematical 

objects, and their necessary attributes and relationships. In fact, it is possible to demonstrate 

the relations between line structures and graphs of different kinds in a systematic way. In the 

remainder of this section we consider the relations between the line structure S#, the primal 

graph G’ and the dual graph G’’. 

 

4.2 Relations between S
#
, G’ and G’’ 

It can be shown that the primal (G’) and dual (G’’) graphs have no elements in common: 

G’∩G’’ = Ø (see later, Table 2). In effect, the lines in the line structure S# either become 

broken into individual links in G’, or retained as whole entities represented by vertices in G’’. 

Meanwhile, the interesctions in S# either become vertices in G’ or edges in G’’. While the 

vertices on G’ have corresponding points on the line structure, and while the links on G’ 

constitute the same line segments on the line structure, these have different identities.7 

                                                           
6 In the line structure (fig. 8 a), the positions of these nodal points – the base of the trunk, the 

tips of the twigs and the joints between branches – are of course present, and indicated by the 

ends of the lines, but they are not explicitly highlighted as categorically different from the 

wood between the joints. They are as alike or unalike as a point that is at the end of a line, or 

the point that is the intersection of lines, or a point midway along a line (cf. fig. 3). 

7 This identity disjunction has common-sense significance. Let R be the set of Roman Roads 

in Britain {Watling Street, Ermine Street, Via Devana…} and A be the set of ‘A’ roads {A1, 

A2, A3, …}. A given stretch of road (say, Edgware Road in London) could coincide with 



 

 

30 
 

Although G’ and G” are complementary, their union G’∪G’’ is not enough to specify S#, 

because neither G’ nor G’’ can tell us the ‘continuity and termination conditions’ (CTC): how 

many line segments each line is constituted by, or whether line X terminates upon line Y, or 

vice versa. This invites consideration of what is this ‘missing’ information. 

 

4.3 Continuity and termination information: S
=
 

We can define a ‘line set’ S= as the set of individual lines making up a line structure, together 

with their local continuity and termination conditions (here, the superscript = denotes the lines 

considered individually), but not including information about which particular lines they 

connect to or what happens to those other lines beyond their intersection. By defining S= this 

way, we aim to capture information in S# that is complementary to G’∪G”; that is, 

information over and above what is contained in G’ or G’’ but without specifying the full 

structure S# (which would happen if we defined all the intersection points, pendant ends and 

identity of lines in relation to each other). 

Let S= comprise the set of lines L {X1, X2, …, Xn} plus the set of continuity and 

termination conditions, say K {K1, K2, …, Kn} corresponding to the set of lines. In general, 

for a line, with n points (intersections or pendant ends; n≥2), the continuity and termination 

conditions may be given by {[l01, l11], [l02, l12], …, [l0n, l1n]}, where l0i is the total number of 

lines terminating at point i (where l0i≥0), and l1i is the total number of lines continuing at 

point i (where l1i ≥0). For the network in Figure 5, this gives S==(L, K); L={A, B, C, D, E}; 

K={KA, KB, KC, KD, KE}; KA={[2,0], [0,2], [1,0]}; KB={[2,0], [2,1], [1,0]}; KC={[1,0], [0,2], 

[1,1], [1,0]}; KD={[2,1], [1,1]}; KE={[2,1], [1,0]} (fig. 9). 

                                                                                                                                                                                     

both Watling Street and the A5; but A5 is not an element of R; and no analysis of the set of 

R, of itself, will yield information about the set of A roads, even if they contain stretches of 

actual road in common. 
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Figure 9: The line set S= of continuity and termination conditions for the lines in the line 

structure of Figure 5.  

 

Figure 9 is not a graph but a series of line structure components, where each bold 

horizontal line represents the line in question, and the fine vertical or diagonal line stubs 

represent parts of other lines. In effect, this information equates with the specification of 

individual routes in route structure analysis (Marshall, 2005:124) (therein defined graphically 

but not explicitly in terms of continuity and termination conditions).  

Note that from S= it is not possible to generate a uniquely corresponding line structure 

S
#, without further information. For example, S= does not tell us which other lines a given line 

connects with; for this we would need G’’; but G’’ does not tell us where those lines connect 

(e.g. at the beginning, middle or end, etc). Hence we need to consider the overall relation 

with S#. 

 

4.4 Relations between S
#
, G’, G’’ and S

=
 

We can set out fully the information contained in S#, G’, G’’ and S= (Table 2).  From the 

foregoing it can be seen that the line structure S# amounts to the sum of information contained 

in G’, G’’ and S=, i.e. 

A 

B 

C 

D 
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S
#

 = G’∪G’’∪S
=. 

 

This is an interesting and significant finding, as it demonstrates the tightly fit relationship 

between the three kinds of structure: (1) the primal G’ and dual G’’ graphs are mutually 

exclusive or complementary; (2) they express information found in S#; (3) yet none of G’, G’’ 

nor G’∪G’’ are enough to obtain S#; (4) the ‘missing’ element is ‘continuity and termination 

conditions’ (CTC), this is supplied by S=; (5) together these three make up the equivalent of 

S
#. This indeed brings home what route structure analysis offers that is missing from primal 

and dual approaches, while showing how route structure analysis (via its use of line structure) 

incorporates everything contained in G’ and G’’.  

The practical significance of this is that the line structure embodies properties that are 

not present in either the primal graph or the dual graph. As we shall see, these properties are 

to do with continuity and termination and their relation to role in the road hierarchy. Let us 

now consider what these properties are. 
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Table 2: Relations between S#, G’, G’’ and S=. 

(i) 
Line structure (S#) 

 

 

 

(ii) 
Primal graph (G’) 

(iii) 
Dual graph (G’’) 

(iv) 
Line set with CTC (S=) 

5 lines 
A{1, 2, 3} 
B{1, 4, 5} 
C{6, 2, 7, 8} 
D{4, 7} 
E{4, 9} 

 
– 
– 
– 
– 
– 

5 vertices 
A 
B 
C 
D 
E 

5 lines 
A{a1, a2, a3} 
B{b1, b2, b3} 
C{c1, c2, c3, c4} 
D{d1, d2} 
E{e1, e2} 

9 line segments 

A1{1, 2} 

A2{2, 3} 

B1{1, 4}, etc. 

9 links 

{1, 2} 

{2, 3} 

{1, 4}, etc. 

– 

– 

– 

9 line segments 

A1{a1, a2} 

A2{a2, a3} 

B1{ b1, b2}, etc. 

9 intersections or 

pendant ends 

{1, 2, 3, 4, 5, 6, 7, 8, 9} 

9 nodes 

{1, 2, 3, 4, 5, 6, 7, 8, 9} 

– 

 

14 intersection 

components  

{a1, a2, a3, b1, b2,…, e2} 

4 Intersection points 

{1, 2, 4, 8} 

4 intersection nodes 

{1, 2, 4, 8} 

– 

 

4 intersections 

6 Line intersections 

A∩B 

A∩C 

B∩D 

B∩E 

C∩D 

D∩E 

 
– 
– 
– 
– 
– 
– 

6 Edges 
AB 
AC 
BD 
BE 
CD 
DE 

6 line intersections 
– 
– 
– 
– 
– 
– 

3 yields 

{C1D0, B1D0, B1E0} 

2 mutual terminations 

{A0B0, D0E0} 

1 mutual continuity 

{A1C1} 

– 

 

– 

 

– 

 

– 

 

– 

 

– 

 

3 yields 

 

2 mutual terminations 

 

1 mutual continuity 

 

Continuity and 
termination / 
Intersection type 
L @1 
X @2 
K @4 
T @7 
Pendant @3,5,6,8,9 

 
 
 
– 
– 
– 
– 
– 

 
 
 
– 
– 
– 
– 
– 

Continuity and 
termination / Intersection 
type 
A={[2,0],[0,2],[1,0]}; 
B={[2,0],[2,1],[1,0]}; 
C={[1,0],[0,2],[1,1],[1,0]}; 
D={[2,1],[1,1]}; 
E={[2,1], [1,0]}; 

 

5 

2 1 

6 

3 
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1 2 3 
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5 Properties of line structures 

In this section we demonstrate, firstly, hierarchical properties that the line structure captures 

directly that the primal graph and the dual graph do not. These are (i) continuity; (ii) junction 

type; and (iii) cardinality, a new indicator of hierarchical status. These are properties which 

can differentiate the relative importance of different lines in a line structure, and the 

hierarchical nature of a line structure as a whole; which may by extension be applied to route 

structures and road networks. Finally, we consider the issue of matrix size requirements for 

specifying line structures, relative to equivalent graphs. 

 

5.1 Continuity 

Some lines continue through intersections while others terminate. The former are more 

continuous than the latter, and we can therefore distinguish lines by their continuity. For 

example, in the tree structure of Figure 8(d), the trunk (line A) is continuous through three 

intersections, while line C does not continue through any intersection. Primal graph 

representations necessarily cannot directly capture this property of continuity, because the 

linear elements are analysed as discrete line segments which do not continue through the 

vertices representing intersections (fig. 8 g, h, i). While some dual approaches may in fact 

‘aggregate’ or ‘concatenate’ individual links or axial lines or line segments into more 

continuous entities (e.g. Thomson and Richardson, 1999; Turner, 2007; Jiang, 2007; Tomko 

et al., 2008), the continuity itself is typically not explicitly calculated; it is in any case not 

obtainable from the dual graph, of itself (fig. 8 j, k, l).  

However, the line structure (or line set) can distinguish the continuity of lines. Indeed, 

in route structure analysis, continuity (l) is simply identified as the number of line segments 

that a route is constituted by; this makes it a simple and convenient indicator that can be 

identified by visual inspection from a network diagram (Marshall, 2005). In Figure 8 (d), line 
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A comprises four line segments and so (in route structure analysis terms) has a continuity (l) 

of 4; line B has a continuity of 2, while lines C, D and E each has a continuity of 1. 

 

5.2 Junction type 

In graph-based analyses of road networks, junction type is typically considered in terms of 

nodal degree: in a primal graph, a node of degree 3 can be equated with a T-junction and a 

node of degree 4 can be equated with an X-junction (crossroads). For example in the network 

in Table 2, node 7 has degree 3, while nodes 2 and 4 have degree 4. However, there is more 

to junction type than nodal degree: some roads might be continuous through a junction, and 

others terminate; we can also recognise these ‘continuity and termination conditions’ as being 

part and parcel of network structure, though these are not routinely captured in most road 

network analyses (Table 3). 

The primal graph G’ does not represent continuity of lines through intersections, 

therefore could not distinguish between a T junction and a Y junction; or between an X 

junction and a K junction. Meanwhile, the dual graph representation G’’ cannot capture the 

continuity and termination conditions of lines that intersect: for example, cannot differentiate 

between cases with two lines (L, T or X) or between three lines (Y or K or 6-pointed star). 

However, a line structure (or line set or route structure) can capture the distinction between 

intersection type on the basis of differential continuity and termination: the line structure S# 

can be seen to differentiate L, T, Y, X, K and * junction types (Table 3). 
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Table 3: Junction types represented as line structures (S#), primal graphs (G’) and dual 

graphs (G’’). Only S# can uniquely distinguish between the six types of junction. 

Junction type S
# G’ G’’ 

L (2 roads joining) 

 

T (2 roads meeting) 

 

Y (3 roads meeting) 

 

X (2 roads crossing) 

 

K (3 roads meeting) 

 

* (3 roads crossing)  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Hierarchy and cardinality 

Although a sense of hierarchy could be obtained by ranking roads by their connectivity (the 

degree of vertices in the dual graph), or indeed by their continuity (see earlier section), 

conventional network analyses give less attention to the kind of hierarchy relating to 

differential continuity and termination – where primary roads are continuous through 

junctions, while subsidiary roads terminate; and hence where there is a direct hierarchical 

relation established between the continuing and terminating roads. 

Primal graph approaches necessarily cannot represent hierarchy of this kind, because 

links are not continuous through intersections (cf fig. 8 g–i; Table 2 column ii). Dual graph 

approaches necessarily cannot represent hierarchy of this kind because while the dual graph 

features lines as continuous entities, the dual graph does not capture the asymmetrical nature 

of the relations between the elements: which lines continue and which terminate in relation to 

each other (cf fig. 8 j–l; Table 2 column iii). A line structure, however, can distinguish this 
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kind of hierarchy, associated with differential continuity and termination. For example, in the 

tree structure in Figure 8 (d), the trunk (line A) is continuous through its intersections with 

branches B, C and D: branches B, C and D terminate on A. Meanwhile line E terminates on 

B. This can be interpreted as A having a higher hierarchical status than B, C and D; and B 

having a higher status than E. This gives a sense of hierarchy, which could be expressed 

mathematically as partial order relations: E≤B; B≤A, C≤A, D≤A. (Here we can conclude that 

E≤A; the partial order equations allow us to make inferences across the network, between 

roads that are not directly connected.) 

Indeed, in general we could interpret hierarchy based on differential continuity and 

termination, in the following terms: (1) where a line yields – that is, terminates on a line (or 

lines) prevailing though an intersection – then the yielding line is of lower (or equal) status 

compared with the prevailing line(s) (e.g. in Figure 5, D yields on C; D≤C); (2) where two 

lines intersect without termination, neither is deemed to yield to the other, and no conclusions 

are drawn on their relative hierarchical status (e.g. lines A and C in Figure 5); (3) where two 

lines terminate at the same point, neither is deemed to yield to the other, and no conclusions 

are drawn on their relative hierarchical status (e.g. lines A and B in Figure 5). Note that we 

are distinguishing here between a line that terminates (comes to an end) and one that yields 

(terminates where at least one other line prevails); and between a line that continues (passes 

through a point without terminating) and one that prevails (continues where at least one other 

line terminates). 

While this can give the relative hierarchical ordering between elements (as already 

seen above for Figure 8, E≤B etc.), it would be useful to be able to quantify more precisely 

the hierarchical value for each line, in a way that can distinguish more finely between the 

roles of different lines in a line structure. There are several possible ways of doing this. Here, 

we create a property that relates to the way that a prevailing line has a superior status to that 
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of yielding lines. Hence we define a simple property called cardinality (k) as follows: (1) 

each line has a cardinality value (k) equal to one more than the highest k value of lines that 

yield to it; (2) a line with no lines yielding to it has a cardinality of 1. In the tree structure in 

Figure 8 (d), lines C, D and E each has a cardinality of 1; line E (k=1) yields on B, so B has a 

cardinality of 2; of all the lines yielding on A, line B has the highest k value (2), so A has a 

cardinality of 2+1=3. Cardinality can also be applied to grid structures, to express 

hierarchical distinction between prevailing and yielding lines, where these distinctions are 

salient. In general, cardinality values can be used to compare the relative hierarchical status 

of lines in any line structure. 

 

5.4 Information considerations for matrix specification 

The amount of information required to specify a line structure depends, at least, upon the 

number of lines (L) present; plus, in the case of the ordinal point matrix, the number of points 

(P) present; or in the case of the parametric point matrix, the number of intersection points 

present (I): 

Parametric point matrix: I×L 

Parametric line matrix: L×L 

Ordinal point matrix: P×L 

Ordinal line matrix: L×L 

 

For the corresponding primal graph (fig. 10), the information required would typically be 

represented in the form of an incidence matrix (V×E) or adjacency matrix (V×V)8. 

                                                           
8 For brief descriptions of these, see for example, 

http://mathworld.wolfram.com/IncidenceMatrix.html; 

http://mathworld.wolfram.com/AdjacencyMatrix.html. 
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Figure 10: Primal graph 

corresponding to Figures 5, 6 and 7. 

 

The incidence matrix (V×E) for the network of Figure 10 would be: 

 

#� #
 $� $
 &� &
 &( * +

1 1 0 1 0 0 0 0 0 0

2 1 1 0 0 1 1 0 0 0

3 0 1 0 0 0 0 0 0 0

4 0 0 1 1 0 0 0 1 1

5 0 0 0 1 0 0 0 0 0

6 0 0 0 0 1 0 0 0 0

7 0 0 0 0 0 1 1 1 0

8 0 0 0 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1

  

 

The adjacency matrix (V×V) for the network of Figure 10 would be: 

 

1 2 3 4 5 6 7 8 9

1 0 1 0 1 0 0 0 0 0

2 1 0 1 0 0 1 1 0 0

3 0 1 0 0 0 0 0 0 0

4 1 0 0 0 1 0 1 0 1

5 0 0 0 1 0 0 0 0 0

6 0 1 0 0 0 0 0 0 0

7 0 1 0 1 0 0 0 1 0

8 0 0 0 0 0 0 1 0 0

9 0 0 0 1 0 0 0 0 0

  

 

5 

1 

6 

3 

4 

A1 

B2 

E 

D 

C2 

7 

8 9 

A2 
B1 

C3 

C1 
2 
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Clearly, these line structures and graphs have different data requirements. For the 

network in Figures 5–7, the matrices for specifying the line structures (section 3.3) are 

smaller than those used for specifying the corresponding graphs (fig. 10). Of course, the data 

requirements – and the degree of potential saving in matrix size – would depend on the nature 

of the network concerned. 

Figure 11 shows a range of seven example networks for consideration. The simplest 

comparison of matrix size, only involving two contrasting variables, would be to compare the 

graph’s adjacency matrix (involving only V2
 – squared since the matrix is two dimensional) 

and one of the line matrices (involving only L2). The smaller the value of L2
 relative to V

2, the 

greater the extent to which the line structure (line matrix) specification will be the more 

parsimonious specification.9 

The range of values for the networks in Figure 11 are given in Table 4. In most cases, 

the amount of information to specify the line structure is less than that to specify the graph – 

often considerably less. In particular, those cases that may be considered most like road 

networks are (c), (d), (e) and (f) – each having a mix of circuits, pendant lines or edges (V>I), 

and lines continuous through intersections (L<E) – show L2/V2 values in the range 0.25 to 

0.64. Those considered less like road networks (b and f) because of their discontinuity are the 

only cases with any of these ratios equalling or exceeding 1. The lowest values are found for 

case (a) which has no 3-way intersections – as such this case is less typical of road networks 

in general, though it could represent some grids. 

 

                                                           
9
 Alternatively, we could use IL/EV, involving all four variables, where the smaller the value 

of IL/EV, the greater the extent to which the line structure (line matrix) will have the more 

parsimonious specification. In this case, by their mathematical definition, I≤V and L≤E. 

Hence IL/EV≤1. In other words, if comparing incidence matrices of a graph versus the 

parametric point matrix, the latter will always be equal to or smaller than the former. 
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 (a)  (b) (c) (d) (e) (f)  (g) 

 

S
#
 

 

 

 

 

 

 

 

 

     

        

 

 

G’ 

 

 

 

 

      

 

Figure 11: Example line structures (S#) and corresponding network graphs (G’). 
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Table 4: Properties relating to matrix size requirements for the networks in Figure 11. 

Network  (a) (b) (c) (d) (e) (f) (g) 

Intersections I 5 4 6 4 4 4 4 

Lines L 4 8 8 4 5 5 6 

Vertices V 13 8 10 8 9 10 4 

Edges E 14 8 12 8 9 9 6 

Ratio L
2/V2

 0.09 1.0 0.64 0.25 0.31 0.25 2.25 

 

We can also make some theoretical calculations for larger networks (fig. 12). This, 

(together with Figure 11 and Table 4) confirms that networks with more pendant nodes, and 

more continuous lines, and fewer multi-spoke vertices, are more likely to be more concisely 

specified by line structures. This effect is likely to be increasingly pronounced with network 

size, for grid-like networks. For the tree comprising 8 lines (fig. 12c), the value of L2/V2  is 

0.25; for an equivalent network comprising 16 lines, V would be 32, and L2/V2  would remain 

at 0.25. However, for the grid of Figure 12 (d), increasing L to 16 would increase V to 64; and 

L
2/V2  would reduce to 0.06; for the grid of Figure 12 (f), increasing L to 16 would increase V 

to 96, and L2/V2  would reduce to 0.03. 
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 (a) (b) (c) (d) (e)  (f)  

 

 

 

 

 

 

 

 

 

 

    

L 8 8 8 8 8 8 

V 8 12 16 16 21 32 

L
2/V2

 1 0.44 0.25 0.25 0.15 0.06 

Figure 12: L
2/V2 values for larger theoretical networks. 
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The conclusion here is that in terms of matrix size, the line structure specification is 

likely to be more parsimonious than graph specification, for road networks with some roads 

continuous through junctions, and increasingly so with network size for grid-like networks. 

That said, the practical utility of this in data management and computational terms would 

depend on other factors to do with detailed specification within proprietary software which 

may in any case incorporate graph-theoretical measures such as V and/or E in any case. 

Nevertheless, this section has shown that, in principle, line structures can represent more 

network properties with less data. This invites further scrutiny beyond this paper; for now we 

turn to demonstration of application to road networks. 

 

6 Application to road network structure  

The properties set out in the previous section could be applied to any real-world system 

representable as a line structure. We now demonstrate the application of these properties to 

the road system context. Here, we look at two small networks, based on real street layouts for 

illustrative purposes: one represents a small village network (fig. 13, left), the other a portion 

of an inner city grid (fig. 13, right). These are represented as line structures (a, b), primal 

graphs (c, d) and dual graphs (e, f). As a check, the values of L2/V2 for these networks can be 

calculated: these are 0.30 for the village network and 0.27 for the city grid. These fall 

comfortably within the range of the values for the ‘most road network like’ networks in 

Figure 11: (c), (d), (e) and (f). 
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(a) Line structure (L=16)   (b) Line structure (L=16) 

 

 

 

 

 

 

 

 

  

(c) Primal graph (V=29)  (d) Primal graph (V=31) 

 

 

 

 

 

 

 

 

 

 

 

 

  

(e) Dual graph  (f) Dual graph 

Figure 13: Two example road networks. Left-hand side: Village network. Right-hand side: 

City grid network.  
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6.1 Hierarchical differentiation of routes 

Each line in each network has values calculated in terms of continuity, connectivity and 

cardinality (Table 5 a and b). For example, for the village network (fig.13a), line K has a 

continuity of 2 (it is composed of 2 individual line segments); it has a connectivity of 4 (as it 

connects with 4 other lines, namely E, J, L and N). The cardinality value is calculated as 3, 

since it prevails over line N which has a cardinality of 2, which value is derived in turn since 

line N prevails over line P, which has a cardinality of 1 (as it prevails over no other line).  

Lines can then be ranked according to any of these properties, i.e. continuity or 

connectivity or cardinality. For example, in the case of the village network (fig. 13a, Table 

5a) the three most important lines emerging are A, E and J. For both continuity (l) and 

connectivity (c), E has the highest value, above that of J and A. But for cardinality (k), A is 

the highest, followed by E and J. The cardinality value picks up that E is the locally most 

connective road of the village, while A is a strategic through route, which E terminates upon. 

Hence cardinality can generate an alternative basis for hierarchical distinction, other than 

simply the differential connectivity or continuity. 

In the case of the city grid (fig. 13b, Table 5b) we can see how J is clearly the most 

continuous and most connective road, followed by B and C (and others). However, the 

relative significance of A is indicated by its cardinality value, k. A has the highest equal k 

value (4), which places it above both B and C. What k is picking up is that while A only has 

two junctions along it, those junctions are with locally significant roads (C and D) which 

themselves gather up the most local roads. Route A therefore has the character of a strategic 

road with fewer but more significant intersections along it. The cardinality indicator has the 

advantage that the value relates to the rest of the network; a line gains in status not just 

because of the presence of side roads immediately off it, but all lines within its ‘yield 

catchment’.  
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Table 5 (a): Properties of line structures in village network (fig. 13 a). 

Line Continuity 

(l) 

Connectivity 

(c) 

Cardinality  

(k) 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

4 

2 

3 

1 

6 

1 

1 

1 

1 

5 

2 

2 

1 

2 

1 

1 

4 

3 

5 

2 

8 

2 

1 

3 

2 

5 

4 

3 

1 

3 

1 

1 

6 

2 

2 

1 

5 

1 

1 

1 

1 

4 

3 

2 

1 

2 

1 

1 
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Table 5 (b): Properties of line structures in city grid network (fig. 13 b). 

Line Continuity 

(l) 

Connectivity 

(c) 

Cardinality 

(k) 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

3 

5 

4 

3 

3 

1 

3 

2 

2 

7 

1 

3 

3 

3 

2 

3 

4 

6 

5 

5 

4 

2 

4 

3 

3 

8 

3 

5 

4 

4 

2 

3 

4 

3 

3 

3 

3 

1 

2 

1 

1 

4 

1 

2 

1 

1 

1 

1 
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6.2 Hierarchical differentiation of junction type 

The line structure representation can differentiate junction type more sensitively than either 

the primal graph or dual graph (Table 6). For example, in the city grid network (fig. 12b) the 

lines K and L are identified as two separate lines that terminate upon line D; as such this is 

considered a ‘K’ junction; whereas line M is deemed to ‘cross over’ lines O and P without 

any of these lines terminating (i.e. interpreted as X junctions). Overall, Table 7 demonstrates 

how the line structure representation provides precise information about the types of 

junctions present: L, T, Y, X, K or *, which cannot be uniquely specified by G’ or G’’ alone. 

 

Table 6: Junction types identified by different network representations 

 Junction type Village network City grid network 

Line structure S#  

L 

T 

X 

Y 

K 

* 

Fig. 13 (a) 

0 

15 

3 

0 

0 

0 

Fig. 13 (b) 

4 

22 

4 

0 

1 

0 

Primal graph G’ 

 

 

 

L (degree 2) 

T or Y (degree 3) 

X or K (degree 4) 

* (degree 6) 

Fig. 13 (c) 

0 

15 

3 

0 

Fig. 13 (d) 

4 

22 

5    

0 

Dual graph G’’  

L or T or X (degree 2) 

Y or K or * (degree 3) 

Fig. 13 (e) 

18 

0 

Fig. 13 (f) 

30 

1 
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6.3 Hierarchical differentiation of networks 

We can also use the cardinality values to compare and contrast the structure of whole 

networks, to interpret whether they are more or less hierarchical. Here we can create a 

‘cardinality graph’, GK’’, showing the yield relations between each line in a line structure 

(fig. 14). The cardinality graph GK’’ (fig. 14 a, b) is a subset of the equivalent dual graph G’’ 

(fig. 13 e, f), where only yield-relationships are shown (i.e. as occur at T or K junctions: 

where one line yields on another). 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a)  (b) 

Figure 14: Cardinality graph (GK’’) for (a) village network; (b) city grid; showing yield 

relations, ordered vertically by cardinality (k value). Each GK’’ is a subset of the respective 

dual graphs shown in Figure 13 (e) and (f).  

 

We can immediately see that the cardinality graphs GK’’ graphically differentiate the 

two networks: the graph for the village network (fig. 14 a) comes to a single peak, whereas 

that for the city grid network (fig. 14 b) is dissipated into four separate peaks. For the village 

network, the maximum cardinality value is absolutely higher (6 versus 4); and by calculation, 

the weighted average is also higher (2.125 versus 2.0 respectively). Therefore cardinality 
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provides a simple quantitative indication of how one network can be ‘more hierarchical’ than 

the other (i.e. over and above being ‘more connected’).  

The significance here is that these indicators of hierarchy are obtainable through 

recognising yield relations, and none of which would be obtainable simply from the 

conventional primal graph or dual graph. (While GK’’ is a subset of G’’, the former cannot be 

obtained directly from the latter, but needs additional information from S= or S#). So, however 

we may wish to define hierarchical structure, it seems useful to have these indicators 

available, and not simply omitted through an oversight due to choice of graph representation. 

 

6.4 Potential application to network design and management 

In addition to network science (analysis and modelling), line structures and their related 

hierarchical properties might be applied as part of network design and management, such as 

in the creation or specification of hierarchies, or analysis of prospective hierarchical 

structures. Any of the properties of continuity, connectivity or cardinality, suitably ranked or 

combined, could be used to create a formal hierarchy of roads. We have already seen that 

cardinality can create a ranked series of roads in a network. For example, given the original 

line structures (fig. 13a, b), one could create a hierarchy where each tier corresponded to a 

cardinality value: hence the village network would have six tiers (fig. 14a) while the city grid 

network would have four tiers (fig. 14b).  

The pattern of roads with their cardinality values gives a visual impression of the 

hierarchical structure of a network (fig. 15). The interesting point to note here is that the 

relation to ‘arteriality’, by which the set of main roads down to any given level all connect up 

contiguously (Morrison, 1966; Marshall, 2005). Arteriality will apply here, at least locally, in 

relation to the set of non-yielding roads. If each non-yielding road (for village, line A; for city 

grid, lines A, B, E and J) is taken as the top tier in its own hierarchy, and all others ranked by 
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cardinality, then the set of all roads down to any given level will be a single contiguous 

network. This is guaranteed because where a road X yields on a road Y, road Y will always 

have a cardinality value greater than or equal to that of X. Hence cardinality could be used to 

generate ‘automatically’ a hierarchy of main roads and subsidiary roads that makes sense 

spatially in terms of arteriality. This could be applied to any network (urban or rural, tree-like 

or grid-like) of any size. 

 

 

 

 

 

 

 

 

 

 

 

  

(a)  (b)  

Figure 15: Line structures weighted by cardinality values can be related to arteriality: (a) 

village; (b) city grid.  

 

7 Conclusions 

This paper has reached five primary results of significance for the articulation of road 

network structure. First, the paper has demonstrated the line structure itself – identifiable as a 

linearly ordered incidence structure – as a mathematical entity (S#) that can take both discrete 

and continuous forms (SO
#) and (SP

#); and can be represented by incidence matrices. The line 

structure can be seen to underpin route structure and other linear representations of road 

networks. It can be seen as part of a continuum of different kinds of representation, bridging 

between cartographical, geometric and graph theoretical representations of road networks 
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(Table 7). Table 7 suggests how we have a successive abstraction of properties from 3-

dimensional representation to the final case, the primal graph; while the dual graph (not 

shown) can be obtained from line structures (d) or (e), but cannot be obtained from (f). While 

the primal graph embodies configurational information the dual graph refers to a different 

aspect of structure, which is, nevertheless, embodied in both versions of the line structure.  

Secondly, the paper has explicitly identified the line set S= whose continuity and 

termination conditions (CTC) need not be seen as some arbitrary properties of structure that 

lie outside the mainstream of network analysis, but that can be seen as being necessary and 

significant in filling a mathematical gap between S# and G’ and G’’: hence the fundamental 

relation S#
 = G’∪G’’∪S

=. Indeed, the continuity and termination conditions (CTC) can be 

seen retrospectively as the ‘raw material’ from which hierarchical properties such as 

continuity and cardinality are formed. 

Thirdly, in doing the above, the paper has shown how the existing network 

representations relate to each other; as such, helps clarify and integrate understanding relating 

the various kinds of primal and dual analyses found in the general network science literature, 

with route structure (Marshall, 2005). While G’ and G’’ are mutually exclusive mathematical 

structures, this does not mean that the associated primal and dual approaches to network 

analysis need be considered rival, mutually exclusive methods; but can be seen as alternative 

selective abstractions from S# to emphasise one (sub)set of attributes rather than another. 

Meanwhile, route structure analysis can be seen as not an arbitrary or separate outlying form 

of analysis, divorced from conventional prime or dual approaches, but as necessary and 

integral to the union of primal, dual and line structure approaches. 
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Table 7: A spectrum of road layout representations. 

 Graphic 

representation 

Explanation Properties 

(a) Map 

 

 

 

 

 

Continuous two-

dimensional surface 

(polygons)  

Areas 

Length 

Breadth 

Angles 

(b) Abstraction 

of 2-D geometry  

(polygon) 

 

Continuous two-

dimensional road surface 

(polygon) 

Road areas 

Road length 

Road breadth 

Angles 

(c) 1-D 

geometric 

abstraction  

 

 

 

 

Centrelines with absolute 

geographical location, 

metric length and 

absolute orientation; and 

continuity  

Road lengths 

Angles 

 

(d) Line structure  

(parametric) (SP
#) 

 

 

 

 

 

 

Identity of lines 

continuous through 

intersections 

All points along lines 

(including points between 

intersections) 

Connectivity, 

continuity and 

cardinality 

Any properties 

associated with 

graphs (see below) 

(e) Line structure  

(ordinal) (SO
#)  

 

 Identity of lines 

continuous through 

intersections 

End points and 

intersection points only 

Connectivity, 

continuity and 

cardinality 

Any properties 

associated with 

graphs (see below) 

(f) Primal graph 

(G’) 

 

 

 

Discrete links or edges 

(discontinuous) 

Discrete nodes or vertices 

(end points and 

intersection points only) 

Degree of nodes or 

vertices; 

connectivity; network 

distance; coefficient 

of clustering, Beta 

index, etc. 

A 

B D 

C 

P 
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Fourthly, the paper has shown how the line structure (S#) can capture properties of 

continuity, cardinality and intersection type that cannot be captured so directly by primal or 

dual graph approaches. While the ultimate practical significance of connectivity, continuity 

and cardinality would ultimately need empirical testing in different contexts, this paper has 

shown that S# is in any case capable of capturing all the information in G’ and G’’ as well. 

Moreover, the line structure can be represented using an incidence matrix which is likely to 

be specifiable more concisely than that for a corresponding graph. Taken together, this 

suggests the line structure can in principle represent more properties, using less data, than 

graphs. This potential parsimony could be of interest for application to existing network 

analyses, even if the additional network properties addressed in this paper were not desired. 

In practice, of course, any utilitarian advantage would depend on what data was already 

available (e.g. the information for the graph may already be held). Nevertheless, this invites 

further scrutiny and suggests that the line structure is at least worthy of consideration when 

deciding how to represent and model networks. 

Finally, the paper has introduced a specific new indicator of hierarchical 

differentiation, cardinality (k), and shown a way of linking from this – via the ‘cardinality 

graph’ (GK’’) – to creating a ranking of routes in a network, and linked to a pattern of 

‘arteriality’. Hence the paper helps provides a link between ‘configurational structure’ and 

‘constitutional structure’ (Marshall, 2005) 

This paper in effect provides a mathematical retrofit and clarification of relations 

between graph-based and route structure approaches. Indeed, route structure analysis can be 

extended to include the new property of cardinality (and any indicators associated with G’ 

and G’’). Together this can pave the way towards more consistent and comprehensive 

network analysis, with potential application also to network design and management. 



 

 

56 

 

Further work suggested is fuller mathematical specification of line structures in terms 

of sensitivities and generalisation; further mathematical elaboration of the relationships 

between different kinds of structure; and consideration of the data format and availability to 

enable practical application of line structure analysis. Further development could address the 

possible automatic generation of representation of line structures from geographic or other 

data. Additionally, there are questions on how to decide what a continuous road is, in the first 

place – such as in physical or administrative terms – for representation as a continuous line in 

a line structure.  

Future research could involve empirical testing or modelling for the relative 

significance and sensitivity of continuity and cardinality values in relation to network 

operation and performance variables (e.g. traffic flow, transport modes, land use frontages, 

path choice algorithms, etc.); and for potential application to road network management. 

Finally, the core part of this paper concerning line structures and their properties – 

sections 3 and 4 in particular – potentially has a more general significance outside of the 

context of road networks. Line structures could in principle be used to represent other kinds 

of structure where continuity of linear elements through intersections is significant, such as 

engineering structures, where lines could represent systems of beams and columns. 
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