Estimating bid-auction models of residential location using census data with imputed household income

Benjamin Heldt, Pedro Donoso, Francisco Bahamonde-Birke, Dirk Heinrichs


Modeling residential location as a key component of the land-use system is essential to understand the relationship between land use and transport. The increasing availability of censuses such as the German Zensus 2011 has enabled residential location to be modeled with a large number of observations, presenting both opportunities and challenges. Censuses are statistically highly representative; however, they often lack variables such as income or mobility-related attributes as in the case of Zensus 2011. This is particularly problematic if missing variables define utility or willingness-to-pay functions that characterize choice options in a location model. One example for this is household income, which is an indispensable variable in land use models because it influences household location preferences and defines affordable location options. For estimating bid-auction location models for different income groups, we impute household income in census data applying an ordered regression model. We find that location models considering this imputation perform sufficiently well as they reveal reasonable and expected aspects of the location patterns. In general, imputing choice variables should thus be considered in the estimation of residential location models but is also promising for other decision problems. Comparing results for two imputation methods, we also show that while applying the deterministic first preference imputation may yield misleading results the probabilistic Monte Carlo simulation is the correct imputation approach.


land use; residential location; missing data; census; estimation; household income

Full Text:



Acheampong, R. A., & Silva, E. (2015). Land use–transport interaction modeling: A review of the literature and future research directions. Journal of Transport and Land Use, 8(3), 11–38.

Alonso, W. (1964). Location and land use. Toward a general theory of land rent. Cambridge, UK: Harvard University Press.

Amt für Statistik Berlin-Brandenburg. (2011). Ergebnisse des Mikrozensus im Land Berlin 2010. Haushalte, Familien und Lebensformen. Retrieved from

Bahamonde-Birke, F. J., & Hanappi, T. (2016). The potential of electromobility in Austria: Evidence from hybrid choice models under the presence of unreported information. Transportation Research Part A: Policy and Practice, 83, 30–41.

Baldemir, E., Ozkoc, H., Bakan, H., & Yesildag, B. (2012). An application of ordered logit model and artificial neural networks in an income model. Current Research Journal of Economic Theory, 4(3), 77-82.

Ben-Akiva, M., & Bowman, J. (1998). Integration of an activity-based model system and a residential location model. Urban Studies, 35(7), 1131–1153. doi:10.1080/0042098984529

Bhat, C. R. (2015). A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation. Transportation Research Part B: Methodological, 79, 161–188.

Bhat, C. R., & Guo, J. Y. (2007). A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels. Transportation Research Part B: Methodological, 41(5), 506–526. doi:

Bierlaire, M. (2003). BIOGEME: A free package for the estimation of discrete choice models. Paper presented at the 3rd Swiss Transportation Research Conference, Monte Verità, Ascona, Switzerland.

Bierlaire, M., & Fetiarison, M. (2009). Estimation of discrete choice models: Extending BIOGEME. Paper presented at the Swiss Transport Research Conference, Monte Verità, Ascona, Switzerland.

Brenke, K. (2008). Migranten in Berlin: Schlechte Jobchancen, geringe Einkommen, hohe Transferabhängigkeit. Wochenbericht des DIW Berlin, 35, 496–507.

Cordera, R., Ibeas, Á., dell’Olio, L., & Alonso, B. (2017). Land use–transport interaction models. Boca Raton, FL: CRC Press.

de la Barra, T. (1989). Integrated land use and transport modeling. Cambridge, UK: Cambridge University Press.

De Palma, A., Motamedi, K., Picard, N., & Waddell, P. (2005). A model of residential location choice with endogenous housing prices and traffic for the Paris region. European Transport, 31, 67–82.

DeSalvo, J. S., & Huq, M. (1996). Income, residential location, and mode choice. Journal of Urban Economics, 40(1), 84–99.

Diamond Jr, D. B. (1980). Income and residential location: Muth revisited. Urban Studies, 17(1), 1–12.

Ellickson, B. (1981). An alternative test of the hedonic theory of housing markets. Journal of Urban Economics, 9, 56–79.

Federal Statistical Office Germany. (2008). German classification of economic activities. Wiesbaden, Germany: Federal Statistics Office Germany.

Guo, J., & Bhat, C. (2004). Modifiable areal units: Problem or perception in modeling of residential location choice? Transportation Research Record, 1898(1), 138–147.

Gutiérrez-i-Puigarnau, E., Mulalic, I., & van Ommeren, J. N. (2016). Do rich households live farther away from their workplaces? Journal of Economic Geography, 16(1), 177–201.

Handy, S. L. (1992). Regional versus local accessibility: Neo-traditional development and its implications for non-work travel. Built Environment, 18(4), 253–267.

Heldt, B., Gade, K., & Heinrichs, D. (2014). Challenges of data requirements for modelling residential location choice: The case of Berlin, Germany. Paper presented at the European Transport Conference, Frankfurt am Main, Germany.

Herzog, T. N., Scheuren, F. J., & Winkler, W. E. (2007). Data quality and record linkage techniques. Wiesbaden: Springer Science and Business Media.

Hunt, J. D., Kriger, D. S., & Miller, E. J. (2005). Current operational urban land-use-transport modelling frameworks: A review. Transport Reviews, 25(3), 329–376.

Hurtubia, R. (2012). Discrete choice and microsimulation methods for agent-based land use modeling. (PhD), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Hurtubia, R., & Bierlaire, M. (2013). Estimation of bid functions for location choice and price modeling with a latent variable approach. Networks and Spatial Economics, 14(1), 47–65.

Hurtubia, R., Gallay, O., & Bierlaire, M. (2010). Attributes of household, locations and real-estate markets for land-use modeling, SustainCity Deliverable 2.7. Lausanne, Switzerland: EPFL Lausanne.

Iacono, M., Levinson, D., & El-Geneidy, A. (2008). Models of transportation and land use change: A guide to the territory. Journal of Planning Literature, 22(4), 323–340.

Krajzewicz, D., & Heinrichs, D. (2016). UrMo accessibility computer – a tool for computing contour accessibility measures. Proceedings of the SIMUL 2016 conference, Rome, Aug. 21-25.

LeRoy, S. F., & Sonstelie, J. (1983). Paradise lost and regained: Transportation innovation, income, and residential location. Journal of Urban Economics, 13(1), 67–89.

Martínez, F. (1992). The bid-choice land-use model: An integrated economic framework. Environment and Planning A, 24, 871–885.

Martínez, F. (1995). Access: The transport-land use economic link. Transportation Research Part B, 29(6), 457–470.

Martínez, F. (1996). MUSSA: Land-use model for Santiago City. Transportation Research Record: Journal of the Transportation Research Board, 1552(1), 126–134.

Martínez, F., & Donoso, P. (2010). The MUSSA II land use auction equilibrium model. In F. Pagliara, J. Preston, & D. Simmonds (Eds.), Residential location choice (pp. 99–113). New York: Springer.

Martínez, F., & Henriquez, R. (2007). A random bidding and supply land use equilibrium model. Transportation Research Part B: Methodological, 41(6), 632–651.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the royal statistical society. Series B (Methodological), 42(2), 109–142.

McFadden, D. (1978). Modelling the choice of residential location. In A. Karlqvist, L. Lundqvist, F. Snickars, & J. Weibull (Eds.), Spatial interaction theory and planning models (pp. 75–96). Amsterdam: North Holland Publishing.

Mincer, J. (1974). Schooling, experience, and earnings. Human behavior and social institutions, No. 2. Cambridge, MA: National Bureau of Economic Research.

Moeckel, R. (2018). Integrated transportation and land-use models. A synthesis of highway practice. (Synthesis 520). Retrieved from

Muth, R. (1969). Cities and housing: The spatial pattern of urban residential land use. Chicago, IL: University of Chicago Press.

OpenStreetMap contributors. (2016). OpenStreetMap. Retrieved from

Ortúzar, J. D., & Willumsen, L. G. (2011). Modelling transport. Chichester, West Sussex, UK: John Wiley & Sons.

Paleti, R., Bhat, C., & Pendyala, R. (2013). Integrated model of residential location, work location, vehicle ownership, and commute tour characteristics. Transportation Research Record: Journal of the Transportation Research Board, 2382, 162–172.

RDC of the Federal Statistical Office and Statistical Offices of the Länder. (2015a). Mikrozensus, survey year 2010.

RDC of the Federal Statistical Office and Statistical Offices of the Länder (2015b). Zensusgesamtdatenbestand Berlin, survey year 2011.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley and Sons.

Rubin, D. B., & Little, R. J. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley & Sons.

Sanko, N., Hess, S., Dumont, J., & Daly, A. (2014). Contrasting imputation with a latent variable approach to dealing with missing income in choice models. Journal of Choice Modelling, 12, 47–57.

Schirmer, P. M., Van Eggermond, M. A. B., & Axhausen, K. W. (2014). The role of location in residential location choice models: A review of literature. Journal of Transport and Land Use, 7(2), 3–21. doi:10.5198/jtlu.v7i2.740

Senatsverwaltung für Stadtentwicklung und Umwelt Berlin. (2012). Teilverkehrszellen Berlin. Retrieved from:

Senatsverwaltung für Stadtentwicklung und Umwelt Berlin. (2015). Flächennutzung und Stadtstruktur. Dokumentation der Kartiereinheiten und Aktualsierung des Datenbestandes 2015. Retrieved from

Senatsverwaltung für Stadtentwicklung und Wohnen Berlin.

(2016a). Berlin environmental atlas. Urban structure - area types differentiated. Retrieved from

Senatsverwaltung für Stadtentwicklung und Wohnen Berlin. (2016b). Berlin environmental atlas. Retrieved from:

Timmermans, H. (2003). The saga of integrated land use-transport modeling: How many more dreams before we wake up? Paper presented at the 10th International Conference on Travel Behavior Research, Lucerne, Switzerland.

vom Berge, P., Schanne, N., Schild, C.-J., Trübswetter, P., Petrovic, A., & Wurdack, A. (2014). Eine räumliche Analyse für Deutschland: Wie sich Menschen mit niedrigen Löhnen in Großstädten verteilen.

Wegener, M. (2011). From macro to micro—how much micro is too much? Transport Reviews, 31(2), 161–177.

Wegener, M. (2014). Land-use transport interaction models. In M. M. Fischer & P. Nijkamp (Eds.), Handbook of regional science, volume 2 (pp. 741–758). Berlin: Springer-Verlag.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge, MA: MIT Press.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software, 32(10), 1–34.

Zondag, B., de Bok, M., Geurs, K. T., & Molenwijk, E. (2015). Accessibility modeling and evaluation: The TIGRIS XL land-use and transport interaction model for the Netherlands. Computers, Environment and Urban Systems, 49, 115–125.

Zondag, B., & Pieters, M. (2005). Influence of accessibility on residential location choice. Paper presented at the 84th Annual Meeting of the Transportation Research Board, Washington, DC.


Copyright (c) 2018 Benjamin Heldt, Pedro Donoso, Francisco Bahamonde-Birke, Dirk Heinrichs