Trends in integrated land use/transport modeling: An evaluation of the state of the art


  • Rolf Moeckel Technical University of Munich
  • Carlos Llorca Garcia Technical University of Munich
  • Ana Tsui Moreno Chou Technical University of Munich
  • Matthew Bediako Okrah Technical University of Munich



Integrated land use transport modeling, microsimulation, software


Integrated land-use/transport models have five decades of history of both widely recognized successful implementations and implementations that remained far behind their originally stated goals. This paper summarizes the state of the art of integrated land-use/transport modeling and reports on findings from the Symposium for the Integration of Land-Use and Transport Models in Raitenhaslach, which is near Munich, in 2016. From these sources, the paper identifies major challenges in integrated land-use/transport modeling and proposes paths that support successful implementations. Particular attention is given to the coordination of short- and long-term decisions, the technical integration of models, microscopic versus macroscopic frameworks and appropriate levels of model complexity. The paper concludes with five themes that require further research to ensure that integrated land-use/transport models will keep up with modeling needs in the future.

Author Biographies

Rolf Moeckel, Technical University of Munich

Assistant Professor Department of Civil, Geo and Environmental Engineering

Carlos Llorca Garcia, Technical University of Munich

PostDoc Department of Civil, Geo and Environmental Engineering

Ana Tsui Moreno Chou, Technical University of Munich

PostDoc Department of Civil, Geo and Environmental Engineering

Matthew Bediako Okrah, Technical University of Munich

PostDoc Department of Civil, Geo and Environmental Engineering


Acheampong, R. A., & Silva, E. (2015). Land use–transport interaction modeling: A review of the literature and future research directions. Journal of Transport and Land Use, 8(3), 11–38. doi:10.5198/jtlu.2015.806

Alonso, W. (1964). Location and land use. Towards a general theory of land rent. Cambridge, Massachusetts: Harvard University Press.

Arentze, T., & Timmermans, H. (2000). ALBATROSS — A learning based transportation oriented simulation system. Eindhoven: European Institute of Retailing and Services Studies.

Axhausen, K. W. (2008). Social networks, mobility biographies, and travel: Survey challenges. Environment and Planning B: Planning and Design, 35(6): 981-996.

Batty, M. (1976). Urban modelling. Algorithms, calibrations, predictions (Vol. 3). London: Cambridge University Press.

Carrasco, J. A., & Miller, E. J. (2006). Exploring the propensity to perform social activities: A social network approach. Transportation, 33(5), 463–480. doi:10.1007/s11116-006-8074-z

Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J. (2016). Representing pedestrian activity in travel demand models: Framework and application. Journal of Transport Geography, 52, 111–122. doi:10.1016/j.jtrangeo.2016.03.009

Conder, S., & Lawton, K. (2002). Alternative futures for integrated transportation and land-use models contrasted with trend-delphi models. Transportation Research Record: Journal of the Transportation Research Board, 1805, 99–107.

de la Barra, T., & Rickaby, P. A. (1982). Modelling regional energy-use: A land-use, transport, and energy-evaluation model. Environment and Planning B: Planning and Design, 9(4), 429–443.

De Vos, J., Mokhtarian, P. L., Schwanen, T., Van Acker, V., & Witlox, F. (2016). Travel mode choice and travel satisfaction: Bridging the gap between decision utility and experienced utility. Transportation, 43(5), 771–796. doi:10.1007/s11116-015-9619-9

Donnelly, R. (2009). A hybrid microsimulation model of urban freight transport demand. (Doctorate doctoral thesis), University of Melbourne, Melbourne.

Donnelly, R. (2010). Are your models agile, or fragile? Paper presented at the TRB Innovations in Travel Modeling, Tempe, AZ.

Donnelly, R., Erhardt, G. D., Moeckel, R., & Davidson, W. A. (2010). Advanced practices in travel forecasting. Transportation Research Board of the National Academies, Washington, DC.

Echenique, M. H., Crowther, D., & Lindsay, W. (1969). A spatial model of urban stock and activity. Regional Studies, 3, 281–312.

ESRI. (1998). ESRI shapefile technical description. Retrieved from

Ettema, D., de Jong, K., Timmermans, H., & Bakema, A. (2004, October). PUMA (Predicting urbanization with multi-agents): A multi-agent approach to modelling urban development and processes. Paper presented at the Integrated Assessment of the Land System: The future of land use, Amsterdam.

Forrester, J. W. (1969). Urban dynamics. Cambridge, Massachusetts: MIT Press.

Gertz, C., Maaß, J., & Guimarães, T. (Eds.). (2015). Auswirkungen von steigenden Energiepreisen auf die Mobilität und Landnutzung in der Metropolregion Hamburg. Ergebnisse des Projektes €LAN - Energeipreisentwicklung und Landnutzung (Vol. 13). Hamburg: Monsenstein und Vannerdat OHG Münster.

Geurs, K., Zondag, B., Jong, G., & de Bok, M. (2013). Accessibility appraisal of land-use/transport policy strategies: More than just adding up travel-time savings. Transportation Research, Part D: Transport and Environment, 15(7), 382–392

Gregor, B. (2006). The Land Use Scenario DevelopeR (LUSDR): A Practical land-use model using a stochastic microsimulation framework. Paper presented at the 86th Annual Meeting of the Transportation Research Board, Washington, DC.

Heinrichs, D. (2016). Autonomous driving and urban land use. In M. Maurer, J. C. Gerdes, B. Lenz, & H. Winner (Eds.), Autonomous driving: Technical, legal and social aspects (pp. 213–231). Berlin, Heidelberg: Springer Berlin Heidelberg.

Horni, A., Nagel, K., & Axhausen, K. W. (Eds.). (2016). The multi-agent transport simulation MATSim. London: Ubiquity Press.

Hunt, J. D., & Abraham, J. E. (2003). Design and application of the PECAS land-use modelling system. Paper presented at the 8th International Conference on Computers in Urban Planning and Urban Management, Sendai, Japan.

Hunt, J. D., Kriger, D. S., & Miller, E. J. (2005). Current operational urban land-use-transport modelling frameworks: A review. Transport Reviews, 25(3), 329–376.

Kii, M., Nakanishi, H., Nakamura, K., & Doi, K. (2016). Transportation and spatial development: An overview and a future direction. Transport Policy, 49, 148–158. doi:

Kristofferson, I., & Engelson, L. (2016). Estimating preferred departure times of road users in a large urban network. Transportation, in press, 1–21. doi:10.1007/s11116-016-9750-2

Lee Jr., D. B. (1973). Requiem for large-scale models. Journal of the American Institute of Planners, 39(3), 163–178.

Li, A., & Larson, J. (2017, March) Phone interview with the Wasatch Front Regional Council on integrated land-use/transport modeling. Interviewer: R. Moeckel.

Llorca, C., Moreno, A., Okrah, M., & Moeckel, R. (2017). Traffic assignment for an integrated land- use and transportation model in a large metropolitan area: Case study of Munich. Paper presented at the 6th Symposium of the European Association for Research in Transportation (hEART 2017), Haifa, Israel.

Lowry, I. S. (1964). A model of metropolis. Memorandum RM-4035-RC. Santa Monica: Rand Corporation.

Malokin, A., Circella, G., & Mokhtarian, P. L. (2015). How do activities conducted while commuting influence mode choice? Paper presented at the 94th Annual Meeting of the Transportation Research Board, Washington, DC.

Martin, R. C. (2003). Agile software development: Principles, patterns, and practices. Upper Saddle River, NJ: Prentice Hall PTR.

Martínez, F. J. (1996). MUSSA: Land-use model for Santiago City. Transportation Research Record, 1552, 126–134.

McFadden, D. (1978). Modelling the choice of residential location. In A. Karlqvist, L. Lundqvist, F. Snickars, & J. W. Weibull (Eds.), Spatial interaction theory and planning models (pp. 75–96). Amsterdam: North-Holland Publishing Company.

Miller, E. J. (2016). Integrating short- and long-run decisions: Past lessons & future prospects. Symposium for the Integration of Land-Use and Transport Models. Raitenhaslach, Germany.

Miller, E. J., & Salvini, P. A. (2001). The integrated land use, transportation, environment (ILUTE) microsimulation modelling system: Description and current status. In D. A. Hensher (Ed.), Travel behavior research. The leading edge (pp. 711–724). Amsterdam: Pergamon.

Mishra, S., Ye, X., Ducca, F., & Knaap, G.-J. (2011). A functional integrated land-use/transportation model for analyzing transportation impacts in the Maryland-Washington, DC, region. Sustainability: Science, Practice, & Policy, 7(2), 60–69.

Moeckel, R. (forthcoming). Integrated transportation and land-use models. NCHRP Synthesis Report. National Academies of Sciences: Washington, D.C.

Moeckel, R., & Nagel, K. (2016). Maintaining mobility in substantial urban growth futures. Transportation Research Procedia, 19, 70–80. doi:

Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., de Nazelle, A., Dons, E., Gerike, R., Götschi, T., Int Panis, L., Kahlmeier, S., & Nieuwenhuijsen, M. (2015). Health impact assessment of active transportation: A systematic review. Preventive Medicine, 76, 103–114. doi:

Nagel, K. (2016). Using MATSim as a travel model plugin to SILO: Why this time we will get it right. Symposium for the Integration of Land-Use and Transport Models. Raitenhaslach, Germany.

Orcutt, G. H., Greenberger, M., Korbel, J., & Rivlin, A. M. (1961). Microanalysis of socioeconomic systems: A simulation study. New York: Harper & Brothers.

Ortúzar, J. d. D., & Willumsen, L. G. (2011). Modelling transport (4th ed.). Chichester: John Wiley & Sons.

Paleti, R., Bhat, C., & Pendyala, R. M. (2013). Integrated model of residential location, work location, vehicle ownership, and commute tour characteristics. Transportation Research Record: Journal of the Transportation Research Board, 2382, 162–172.

Putman, S. H. (1983). Integrated urban models. Policy analysis of transportation and land use (Vol. 10). London: Pion.

Rosseau, G. (2017, January) Phone interview with the Atlanta Regional Council on integrated land-use/transport modeling. Interviewer: R. Moeckel.

Ruehr, E. (2016). Farewell to level of service? California’s efforts to create a more environmentally-friendly performance measure. Paper presented at the International Symposium on Enhancing Highway Performance, Berlin.

Schönfelder, S., & Axhausen, K. W. (2016). Urban rhythms and travel behavior. Spatial and temporal phenomena of daily travel. Abingdon, UK: Routledge.

Shahumyan, H., & Moeckel, R. (2016). Integration of land use, land cover, transportation, and environmental impact models: Expanding scenario analysis with multiple modules. Environment and Planning B: Planning and Design. doi:10.1177/0265813516647062

Simmonds, D., Waddell, P., & Wegener, M. (2011). Equilibrium vs. dynamics in urban modelling. Enviornment and Planning B: Urban Analytics and City Science, 40(6), 1051–1070.

Simmonds, D. C. (1999). The design of the DELTA land-use modelling package. Environment and Planning B: Planning and Design, 26(5), 665–684.

Simmonds, D. C. (2016). Transport modelling, microsimulation and other issues in land-use/economic/transport modelling practice. Symposium for the Integration of Land-Use and Transport Models. Raitenhaslach, Germany.

Simmonds, D. C., & Feldman, O. (2007). Advances in integrated urban/regional land-use/transport modelling using the DELTA package. Paper presented at the World Conference on Transport Research (WCTR), Berkeley, CA.

Stabler, B. (2017). Open matrix. Retrieved from

Strauch, D., Moeckel, R., Wegener, M., Gräfe, J., Mühlhans, H., Rindsfüser, G., & Beckmann, K. J. (2005). Linking transport and land-use planning: The microscopic dynamic simulation model ILUMASS. In P. M. Atkinson, G. M. Foody, S. E. Darby, & F. Wu (Eds.), GeoDynamics (pp. 295-311). Boca Raton: CRC Press.

Tian, Y., & Chiu, Y.-C. (2014). A computational efficient approach to retaining zone pair travel time information in dynamic traffic assignment for activity-based model integration. Paper presented at the 93rd Annual Meeting of the Transportation Research Board, Washington, DC.

Waddell, P. (2000). A behavioral simulation model for metropolitan policy analysis and planning: Residential location and housing market components of UrbanSim. Environment and Planning B: Planning and Design, 27(2), 247–263.

Waddell, P. (2002). UrbanSim. Modeling urban development for land use, transportation, and environmental planning. Journal of the American Planning Association, 68(3), 297–314.

Waddell, P. (2011). Integrated land use and transportation planning and modelling: Addressing challenges in research and practice. Transport Reviews 31(2), 209–229.

Waddell, P., Borning, A., Ševíková, H., & Socha, D. (2006). Opus (the open platform for urban simulation) and UrbanSim 4. Paper presented at the 7th Annual International Conference on Digital Government Research, San Diego, CA.

Waddell, P., Wang, L., Charlton, B., & Olsen, A. (2010). Microsimulating parcel-level land use and activity-based travel: Development of a prototype application in San Francisco. Journal of Transport and Land Use, 3(2), 65–84. doi:10.5198/jtlu.v3i2.124

Waddell, P., Wang, L., & Liu, X. (2008). UrbanSim: An evolving planning support system for evolving communities. In R. Brail (Ed.), Planning support systems (pp. 103–138). Cambridge, MA: Lincoln Institute for Land Policy.

Waddell, P., Wang, L., Sevcikova, H., & Borning, A. (2015). Agile modeling: Adapting UrbanSim to the European context using the open platform for urban simulation. In M. Bierlaire, A. de Palma, & P. Waddell (Eds.), Integrated transport and land-use modeling for sustainable cities (pp. 309–331). Abingdon, UK: Routledge and EPFL Press.

Wagner, P., & Wegener, M. (2007). Urban land use, transport and environment models. Experiences with an integrated microscopic approach. disP, 170(3), 45–56.

Wang, F. (1998). Urban population distribution with various road networks: A simulation approach. Environment and Planning B: Planning and Design, 25, 265–278.

Wegener, M. (1982). Modeling urban decline: A multilevel economic-demographic model for the Dortmund Region. International Regional Science Review, 7(2), 217–241.

Wegener, M. (2004). Overview of land-use/transport models. In D. A. Hensher, K. J. Button, K. E. Haynes, & P. R. Stopher (Eds.), Handbook of transport geography and spatial systems (Vol. 5, pp. 127–146). Amsterdam: Elsevier.

Wegener, M. (2011). From macro to micro—how much micro is too much? Transport Reviews, 31(2), 161–177. doi:10.1080/01441647.2010.532883

Wegener, M. (2014). Land-use transport interaction models. In M. Fischer & P. Nijkamp (Eds.), Handbook of regional science (pp. 741–758). Berlin, Heidelberg: Springer.

Wegener, M., & Fürst, F. (1999). Land-use transport interaction: State of the art. Berichte aus dem Institut für Raumplanung, Vol. 46. IRPUD: Dortmund.

Wilson, A. G. (1967). Statistical theory of spatial distribution models. Transportation Research, 1, 253–269.

Ziemke, D., Nagel, K., & Bhat, C. (2015). Integrating CEMDAP and MATSIM to increase the transferability of transport demand models. Transportation Research Record: Journal of the Transportation Research Board, 2493, 117–125. doi:10.3141/2493-13




How to Cite

Moeckel, R., Llorca Garcia, C., Moreno Chou, A. T., & Okrah, M. B. (2018). Trends in integrated land use/transport modeling: An evaluation of the state of the art. Journal of Transport and Land Use, 11(1).