Theoretical substantiation of trip length distribution for home-based work trips in urban transit systems

Peter Horbachov, Stanislav Svichynskyi

Abstract


Modern approaches to the modeling of transport demand imply the use of calibration procedures during the origin-destination (O-D) matrix estimation or transit assignment. These procedures lead to misrepresenting generated and attracted trips or changing the trip length distribution (TLD). It means that the methods of transport planning can be improved by means of determination, validation and implementation of the TLD to calculate the O-D matrix. The analysis of research results in the field of mass transit reveals an explicit similarity between TLD in different cities and the gamma distribution. It points to general regularities in various systems of mass transit that lead to the similarity in TLD. The regularities are determined by studying the spatial distribution of mass transit stops, which are considered trip origins and destinations. The experimental research was conducted in 10 Ukrainian cities using probability theory methods.

Keywords


Trip length distribution, home based work trips, transit stop coordinates, OD matrix

Full Text:

PDF

References


Acheampong, R. A., & Silva, E. A. (2015). Land use-transport interaction modeling: A review of the literature and future research directions. Journal of Transport and Land Use, 8(3), 11–38.

Ahern, A., Weyman G., Redelbach M., Schulz A., Akkermans L., Vannacci L., Anoyrkati, E., & van Grinsven, A. (2013). Analysis of national travel statistics in Europe OPTIMISM WP2: Harmonization of national travel statistics in Europe (Report EUR 26054 EN). Retrieved from http://publications.jrc.ec.europa.eu/repository/bitstream/JRC83304/tch-d2.1_final.pdf

Aultman-Hall, L., Sears J., Dowds J., & Hines P. (2012). Spatial analysis of travel demand and accessibility in Vermont: Where will EVs work? (TRC Report 12-007) Retrieved from http://www.uvm.edu/ ~transctr/research/trc_reports/UVM-TRC-12-007.pdf

Benson, J. D., Teniente M. F., Stover, V. G., & Cunagin, W. D. (1979). An improved model for the estimation of trip length frequency distribution (Report No. 0194-5). Retrieved from https://library.ctr.utexas.edu/digitized/texasarchive/80-2-7.pdf

Bovy, P. H. L., Bliemer, M. C. J., & van Nes, R. (2006). Transportation modeling. Delft, Netherlands: Delft University of Technology.

Chow, Y. S., & Teiher, H. (1978). Probability theory. New York, NY: Springer-Verlag.

Cibulka, J. (1987). Качество пассажирских перевозок в городах [Quality of city passenger transportation]. Moscow: Transport.

Cox, D. R., & Smith, W. L. (1961). Queues. Hoboken, NJ: Wiley.

Daniels, R., & Mulley, C. (2013). Explaining walking distance to public transport: The dominance of public transport supply. Journal of Transport and Land Use, 6(2), 5–20.

Efremov, I. S., & Golc G. A. (1988). Городской пассажирский транспорт и АСУ транспорта [City public transport and automatic control systems in transportation], in V. M. Kobozev (Ed.). Moscow: Nauka.

El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., & Surprenant-Legault, J. (2014). New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas. Transportation, 41(1), 193–210.

Englund, D., Eash, R., & Lupa, M. (2010, June). Matching workers and employment opportunities: Linking worker incomes and wages in regional travel models. Paper presented at the Transport Chicago conference, Chicago, IL. Retrieved from http://www.transportchicago.org/uploads/5/7/2/0/5720074/matching_workers_and_ employment_opportunities.pdf

Feller, W. (1966). An introduction to probability theory and its applications (Vol. II). Hoboken, NJ: Wiley.

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions (4th ed.). Hoboken, NJ: Wiley.

Fricker, J. D., & Jin, L. (2008). Development of an integrated land-use transportation model for Indiana (Final Report FHWA/IN/JTRP-2008/15). West Lafayette, IN: Purdue University, School of Civil Engineering.

Gehrke, S. R., & Clifton, K. J. (2016). Toward a spatial-temporal measure of land-use mix. Journal of Transport and Land Use, 9(1), 171–186.

Harznagy, A., Fi, I., London, A., & Neґmeth, T. (2015, June). Complex network analysis of public transportation networks: A comprehensive study. Paper presented at the 2015 Models and Technologies for Intelligent Transportation Systems (MT-ITS) conference, Budapest, Hungary. Abstract retrieved from http://ieeexplore.ieee.org/document/7223282/.

Horner, M. W., & Downs, J. A. (2014). Integrating people and place: A density-based measure for assessing accessibility to opportunities. Journal of Transport and Land Use, 5(2), 23–40.

Huntsinger, L. F., & Donnelly, R. (2014, January). Reconciliation of regional travel model and passive device tracking data. Paper presented at the Transportation Research Board 93rd Annual Meeting, Washington, DC.

Junge, J. R., & Levinson, D. (2012). Prospects for transportation utility fees. Journal of Transport and Land Use, 5(1), 33–47.

Katsis, P., Papageorgiou, T., & Ntziachristos, L. (2014). Modelling the trip length distribution impact on the CO2 emissions of electrified vehicles. Energy and Power, 4(1A), 57–64.

Kim, J., & Lee, S. (2001). A gradient method for the estimation of travel demand using traffic counts on the large scale network. Journal of the Eastern Asia Society for Transportation Studies, 4(2), 351–357.

L & A Transportation (2006). Lincoln MPO travel demand model (Model documentation). Princeton, NJ: Lima & Associates Transportation—G.I.S.

Milakis, D., Cervero, R., & Wee, L. B. (2015). Stay local or go regional? Urban form effects on vehicle use at different spatial scales: A theoretical concept and its application to the San Francisco Bay Area. Journal of Transport and Land Use, 8(2), 59–86.

Moeckel, R. (2017). Constraints in household relocation: Modeling land-use/transport interactions that respect time and monetary budgets. Journal of Transport and Land Use, 10(1), 211–228.

Mounir, M. M. A.-A. (2014). Calibrating a trip distribution gravity model stratified by the trip purposes for the city of Alexandria. Alexandria Engineering Journal, 53, 677–689.

Ortuzar, J. D., & Willumsen, L. G. (2011). Modelling transport (4th ed.). Chichester, England: John Wiley & Sons.

O’Sullivan, S., & Morrall, J. (1996). Walking distances to and from light-rail transit stations. Transportation Research Record, 1538, 19–26.

Porter, C. D., Brown, A., Dunphy, R. T., & Vimmerstedt, L. (2013). Effects of the built environment on transportation: Energy use, greenhouse gas emissions, and other factors (Research Report). Retrieved from https://www.nrel.gov/docs/fy13osti/55634.pdf

Rao, S. S. (2009). Engineering optimization: Theory and practice (4th ed.). Hoboken, NJ: Wiley.

Riordan, J. (1962). Stochastic service systems. Hoboken, NJ: Wiley.

Saaty, T. L. (1961). Elements of queueing theory. New York: McGraw-Hill.

Saff, E. B., & Snider, A. D. (1976). Fundamentals of complex analysis for mathematics, science and engineering. Englewood Cliffs, NJ: Prentice Hall.

Shelejhovskij, G. V. (1946). Композиция городского плана как проблема транспорта [City layout as a problem of transport]. Moscow: GIPROGOR.

Srinivasan, S., Provost, R., & Steiner, R. (2013). Modeling the land-use correlates of vehicle-trip lengths for assessing the transportation impacts of land developments. Journal of Transport and Land Use, 6(2), 59–75.

Stead, D., & Marshall, S. (2001). The relationships between urban form and travel patterns. An international review and evaluation. European Journal of Transport and Infrastructure Research, 1(2), 113–141.

Transportation Research Board. (2010). NCHRP synthesis 406: Advanced practices in travel forecasting. A synthesis of highway practice (Report). Retrieved from http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_406.pdf

Transportation Research Board. (2013). Transit capacity and quality of service manual (TCRP report 165). Retrieved from http://www.trb.org/Main/Blurbs/169437.aspx

Veenstra, S. A., Thomas, T., & Tutert, S. I. A. (2010). Trip distribution for limited destinations: A case study for grocery shopping trips in the Netherlands. Transportation, 37, 663–676.

VISUM (Version 10.0). (2010). Karlsruhe, Germany: PTV Planung Transport Verkehr AG.

Wegener, M., & Fuerst, F. (2004). Land-use transport interaction: State of the art. SSRN Electronic Journal. doi:10.2139/ssrn.1434678

Xie, F., & Levinson, D. (2011). Evolving transportation networks. New York: Springer.

Yang, F., Jin, P. J., Wan, X., Li, R., & Ran, B. (2013, January). Dynamic origin-destination travel demand estimation using location-based social networking data. Paper presented at the Transportation Research Board 92nd Annual Meeting, Washington, DC.

Yigitcanlar, T., Dodson, J., Gleeson, B., & Sipe, N. (2005). Sustainable Australia: Containing travel in master planned estates. Brisbane, Australia: Griffith University, URP.

Zhao, F., Chow, L.-F., Li, M.-T., & Gan, A. (2014). Refinement of FSUTMS trip distribution methodology (Final Report for BB942). Retrieved from http://lctr.eng.fiu.edu/re-project-link/bb942.pdf




DOI: http://dx.doi.org/10.5198/jtlu.2018.916


Copyright (c) 2018 Peter Horbachov, Stanislav Svichynskyi