Multi-dimensional geometric complexity in urban transportation systems

Farideddin Peiravian, Sybil Derrible


Transportation networks serve as windows into the complex world of urban systems. By properly characterizing a road network, one can better understand its encompassing urban system. This study offers a geometrical approach toward capturing inherent properties of urban road networks. It offers a robust and efficient methodology toward defining and extracting three relevant indicators of road networks—area, line, and point thresholds—through measures of their grid equivalents. By applying the methodology to 50 U.S. urban systems, one can successfully observe differences between eastern versus western, coastal versus inland, and old versus young cities. Moreover, we show that many socioeconomic characteristics, as well as travel patterns, within urban systems are directly correlated with their corresponding area, line, and point thresholds.


complex urban systems, transportation networks, quantitative geography

Full Text:



Ahmad, N., & Derrible, S. (2015). Evolution of public supply water withdrawal in the USA: A network approach. Journal of Industrial Ecology, 19(2), 321–30. doi:10.1111/jiec.12266

Amini, B., Peiravian, F.,Mojarradi, M., & Derrible, S. (2016). Comparative analysis of traffic performance of urban transportation systems. Transportation Research Record, 2594(19), 159–168. doi:10.3141/2594-19

Antunes, A. L., Bavaud, F., & Mager, C. (2009). Handbook of theoretical and quantitative geography. Chavannes-près-Renens, Switzerland: Université de Lausanne, Faculté de géosciencies et de l’environment.

Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. doi:10.1126/science.286.5439.509

Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101. doi:10.1016/j.physrep.2010.11.002

Barthélemy, M., & Flammini, A. (2008). Modeling urban street patterns. Physical Review Letters, 100(13), 1–4. doi:10.1103/PhysRevLett.100.138702

Barthélemy, M., & Flammini, A. (2009). Co-evolution of density and topology in a simple model of city formation. Networks and Spatial Economics, 9(3), 401–25. doi: 10.1007/s11067-008-9068-5

Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. Cambridge, MA: MIT Press.

Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771. doi:10.1126/science.1151419

Batty, M., & Longley, P. A., (1994). Fractal cities, A geometry of form and function. Cambridge, MA: Academic Press Inc.

Brown, B. B., Smith, K. R., Hanson, H., Fan, J. X., Kowaleski-Jones, L., & Zick, C. D. (2013). Neighborhood design for walking and biking. American Journal of Preventive Medicine, 44(3), 231–238. doi:10.1016/j.amepre.2012.10.024

Buhl, J., Gautrais, J., Reeves, N., Solé, R. V., Valverde, S., Kuntz, P., & Theraulaz, G. (2006). Topological patterns in street networks of self-organized urban settlements. The European Physical Journal B, 49(4), 513–22. doi:10.1140/epjb/e2006-00085-1

Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural properties of planar graphs of urban street patterns. Physical Review E, 73(6), 1–8. doi:10.1103/PhysRevE.73.066107

Chen, Y., & Wang, J. (2014, February). Recursive subdivision of urban space and Zipf’s law. Physica A: Statistical Mechanics and Its Applications, 39, 392–404. doi:10.1016/j.physa.2013.10.022

Chen, Y., & Zhou, Y. (2004). Multi-fractal measures of city-size distributions based on the three-parameter Zipf model. Chaos, Solitons & Fractals, 22(4), 793–805. doi:10.1016/j.chaos.2004.02.059

Cottrill, C. D., & Derrible, S. (2015). Leveraging big data for the development of transport sustainability indicators. Journal of Urban Technology, 22(1), 45–64. doi:10.1080/10630732.2014.942094

Courtat, T., Gloaguen, C., & Douady, S. (2011). Mathematics and morphogenesis of cities: A geometrical approach. Physical Review E, 83(3), 036106(1–12). doi:10.1103/PhysRevE.83.036106

Crucitti, P., Latora, V., & Porta, S. (2006). Centrality in networks of urban streets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(1), 015113. doi:10.1063/1.2150162

Derrible, S., & Ahmad, N. (2015). Network-based and binless frequency analyses. PLOS ONE, 10(11), e0142108. doi:10.1371/journal.pone.0142108

Derrible, S., & Kennedy, C. (2009). Network analysis of world subway systems using updated Graph Theory. Transportation Research Record, 2112(-1), 17–25. doi:10.3141/2112-03

Derrible, S., Saneinejad, S., Sugar, L., & Kennedy, C. (2010). Macroscopic model of greenhouse gas emissions for municipalities. Transportation Research Record 2191(-1), 174–81. doi:10.3141/2191-22

Gabaix, X. (1999). Zipf’s law for cities: An explanation. The Quarterly Journal of Economics, 114(3), 739–67. doi:10.1162/003355399556133

Garrison, W. L., & Marble, D. F. (1962). The structure of transportation networks. Evanston, IL: Ft. Belvoir Defense Technical Information Center.

Gonzalez-Val, R. (2011). Deviations from Zipf’s law for American cities: An empirical examination. Urban Studies, 48(5), 1017–1035. doi:10.1177/0042098010371394

Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Edward Arnold.

Hanson, S., and Giuliano, G. (Eds.). (2004). The geography of urban transportation. 3rd ed. New York: The Guilford Press.

Hillier, B. 1999. Space is the machine. Cambridge, UK: Cambridge University Press.

Hillier, B., & Hanson, J. (1984). The social logic of space. Vol. 1. Cambridge, England: Cambridge University Press.

Jacobs, J. (1961). The death and life of great American cities. New York: Vintage Books.

Jiang, B. (2007). A topological pattern of urban street networks: Universality and peculiarity. Physica A: Statistical Mechanics and Its Applications, 384(2), 647–655. doi:10.1016/j.physa.2007.05.064

Jiang, B., and Claramunt, C. (2004). Topological analysis of urban street networks. Environment and Planning B: Planning and Design, 31(1), 151–62. doi:10.1068/b306

Jiang, B., & Liu, X. (2012). Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information. International Journal of Geographical Information Science, 26(2), 215–29. doi:10.1080/13658816.2011.575074

Kalapala, V., Sanwalani, V., Clauset, A., & Moore, C. (2006). Scale invariance in road networks. Physical Review E, 73(2), 1–6. doi:10.1103/PhysRevE.73.026130

Kansky, K. J. (1963). Structure of transportation networks: Relationships between network geometry and regional characteristics. Chicago, IL: The University of Chicago.

Karduni, A., Kermanshah, A., & Derrible, S. (2016, June). A protocol to convert spatial polyline data to network formats and applications to world urban road networks. Scientific Data, 3, pp. 160046. doi:10.1038/sdata.2016.46

Kermanshah, A., & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153(September), 39–49. doi:10.1016/j.ress.2016.04.007

Kurant, M., & Thiran, P. (2006). Extraction and analysis of traffic and topologies of transportation networks. Physical Review E, 74(3), 1–10. doi:10.1103/PhysRevE.74.036114

Lämmer, S., Gehlsen, B., & Helbing, D. (2006). Scaling laws in the spatial structure of urban road networks. Physica A: Statistical Mechanics and Its Applications, 363(1), 89–95. doi:10.1016/j.physa.2006.01.051

Levinson, D. (2012). Network structure and city size. PLOS ONE, 7(1): e29721. doi:10.1371/journal.pone.0029721

Levinson, D., & Yerra, B. (2006). Self-organization of surface transportation networks. Transportation Science, 40(2), 179–88. doi:10.1287/trsc.1050.0132

Li, J. (2002). Research on fractal characteristics of urban traffic network structure based on GIS. Chinese Geographical Science, 12(4), 346–349.

Louf, R., Jensen, P., & Barthelemy, M. (2013). Emergence of hierarchy in cost-driven growth of spatial networks.

Proceedings of the National Academy of Sciences, 110(22), 8824–8829. doi:10.1073/pnas.1222441110

Masucci, A. P., Smith, D., Crooks, A., & Batty, M. (2009). Random planar graphs and the London street network. The European Physical Journal B, 71(2), 259–271. doi:10.1140/epjb/e2009-00290-4

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. doi:10.1137/S003614450342480

Nussle, J. (2008). Update of statistical area definitions and guidance on their uses. U.S. Office of Management and Budget. Retrieved from

Peiravian, F., S. Derrible, S., & Ijaz, F. (2014, July). Development and application of the Pedestrian Environment Index (PEI). Journal of Transport Geography, 39, 73–84. doi:10.1016/j.jtrangeo.2014.06.020

Samaniego, H., & Moses, M. E. (2008). Cities as organisms: Allometric scaling of urban road networks. Journal of Transport and Land Use, 1(1), 21–39. doi:10.5198/jtlu.v1i1.29

Scellato, S., Cardillo, A., Latora, V., & Porta, S. (2006). The backbone of a city. The European Physical Journal B, 50(1–2), 221–25. doi:10.1140/epjb/e2006-00066-4

Taaffe, E. J. (1973). Geography of transportation. Englewood Cliffs, NJ: Prentice Hall.

U.S. Census Bureau. 2010. American Community Survey (ACS). Retrieved from

U.S. Census Bureau. 2013. TIGER/Lines Shapefiles. Retrieved from

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–42.

Wikipedia. (2013). North American settlements by year of foundation. Retrieved from

Wikipedia. (2014). Metropolitan Statistical Area. Retrieved from

Xie, F., & Levinson, D. (2007). Measuring the structure of road networks. Geographical Analysis, 39(3), 336–56. doi:10.1111/j.1538-4632.2007.00707.x

Xie, F., & Levinson, D. (2009a). Topological evolution of surface transportation networks. Computers, Environment and Urban Systems, 33(3), 211–23. doi:10.1016/j.compenvurbsys.2008.09.009

Xie, F., & Levinson, D. (2009b). Modeling the growth of transportation networks: A comprehensive review. Networks and Spatial Economics, 9(3), 291–307. doi:10.1007/s11067-007-9037-4

Yerra, B., & Levinson, D. (2005). The emergence of hierarchy in transportation networks. The Annals of Regional Science, 39(3), 541–53. doi:10.1007/s00168-005-0230-4