Microsimulation framework for urban price-taker markets
DOI:
https://doi.org/10.5198/jtlu.v6i1.325Keywords:
Large-scale microsimulation, Behavioural modelling, Urban markets, Assignment problemsAbstract
In the context of integrated transportation and other urban engineering infrastructure systems, there are many examples of markets, where consumers exhibit price-taking behavior. While this behavior is ubiquitous, the underlying mechanism can be captured in a single framework. Here, we present a microsimulation framework of a price-taker market that recognizes this generality and develop efficient algorithms for the associated market-clearing problem. By abstracting the problem as a specific graph theoretic problem (i.e., maximum weighted bipartite graph), we are first able to exploit algorithms that are developed in graph theory. We then explore their appropriateness in terms of large-scale integrated urban microsimulations. Based on this, we further develop a generic and efficient clearing algorithm that takes advantage of the features specific to urban price-taker markets. This clearing solution is then used to operationalize two price-taker markets, from two different contexts, within a microsimulation of urban systems. The initial validation of results against the observed data generally shows a close match.Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with JTLU agree to the following terms: 1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution-Noncommercial License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. 2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. 3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.